
Applied Physics Laboratory University of Washington
1013 NE 40th Street Seattle, Wash ing ton 98105-6698

The Sonar Simulation Toolset, Release 4.1:
Science, Mathematics, and Algorithms

Technical Report

APL-UW TR 0404
March 2005

Approved for public release; distribution is unlimited

by Robert P. Goddard

ONR Contracts N00014-01-G-0460 and N00014-98-G-0001

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Acknowledgments

The Sonar Simulation Toolset was developed with sponsorship from several U. S. Navy
sources, most recently ONR Code 333 (Adam Nucci) and ONR’s “ARL Project”
(Code 321US, John Tague). Earlier sponsors included the Naval Surface Warfare
Center, Carderock (William Beatty) and the Naval Underwater Systems Center, New
London, CT (Walter Hauck and Thomas Wheeler).

The SST development team at APL-UW consists of the author, Pete Brodsky,
Patrick Tewson, Brandon Smith, and Don Percival. Warren Fox, Jim Luby, and
Chris Eggen have provided guidance, testing, and leadership. Earlier team mem-
bers included Beth Kirby, Kou-Ying Moravan, Megan Hazen, Bill Kooiman, Gordon
Bisset, and undergraduates Pat Lasswell and Jason Smith. Kou-Ying Moravan and
Pierre Mourad supplied the original Fortran implementations from which several of
the boundary models started. Mike Boyd, Warren Fox, Greg Anderson, and Chris
Eggen have contributed CASS expertise. The REVGEN project, where SST got its
start, was led by Dave Princehouse.

The Comprehensive Acoustic System Simulation (CASS) program is available
through the support of the Naval Undersea Warfare Center, Newport (NUWCDI-
VNPT). Permission to use and distribute CASS and GSM is granted by NUWC
(Emily McCarthy).

SST’s users are the ingredients that make SST a useful tool instead of an aca-
demic exercise. Special thanks are due to the many SST users at ARL/PSU and
NUWC (Newport, RI), with whom we have enjoyed a long and fruitful collaborative
relationship.

Typeset August 20, 2004

ii TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Abstract

The Sonar Simulation Toolset (SST) is a computer program that produces simu-
lated sonar signals, enabling users to build an artificial ocean that sounds like a real
ocean. Such signals are useful for designing new sonar systems, testing existing sonars,
predicting performance, developing tactics, training operators and officers, planning
experiments, and interpreting measurements. SST’s simulated signals include rever-
beration, target echoes, discrete sound sources, and background noise with specified
spectra. Externally generated or measured signals can be added to the output sig-
nal or used as transmissions. Eigenrays from the Generic Sonar Model (GSM) or
the Comprehensive Acoustic System Simulation (CASS) can be used, making all of
GSM’s propagation models and CASS’s Gaussian Ray Bundle (GRAB) propagation
model available to the SST user. A command language controls a large collection of
component models describing the ocean, sonars, noise sources, targets, and signals.
The software runs on several different UNIX computers. The software runs on several
UNIX computers and Windows. SST’s primary documentation is the SST Web (a
large HTML “web site” distributed with the SST software), supported by a collection
of documented examples.

This report emphasizes the science, mathematics, and algorithms underlying SST.
This report is intended to be updated often and distributed with SST as an integral
part of the SST documentation.

TR 0404 iii

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Contents

Acknowledgments ii

Abstract iii

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Purpose . 1

1.2 Objectives and Attributes . 2

1.3 History . 3

1.4 Release . 5

1.5 Outline . 5

1.6 Notation . 5

2 Overview 6

2.1 Assumptions . 6

2.2 Outputs . 7

2.3 Inputs . 7

2.4 Models . 8

2.5 Units and Coordinate Systems . 10

2.6 Computers . 11

3 Example 12

4 Signals and Signal Transformations 13

4.1 Signal Representations . 13

4.1.1 Real Samples . 13

4.1.2 Complex Envelope . 14

4.1.3 Windowed Frequency Domain 15

4.2 Second Moment Time Series: Power Spectra and Scattering Functions 16

4.2.1 Power Spectra . 16

4.2.2 Scattering Functions . 18

iv TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

4.3 Data Flow Design . 18

4.4 Data Flow Classes . 22

4.5 Basic Signal Operations . 24

4.5.1 Variable Delays . 25

4.5.2 Variable Finite Impulse Response Filters 27

4.6 Generating Signals . 28

4.6.1 Generating Gaussian Noise . 28

4.6.2 Generating Harmonic Tone Families 30

4.6.3 Generating Modulated Tones 30

4.7 Window Functions . 31

4.8 Grids . 32

5 The Eigenray Model 33

5.1 Straight-line Eigenray Model . 35

5.2 CASS/GRAB Eigenrays . 37

5.3 Generic Sonar Model (GSM) Eigenrays 37

5.4 Eigenray Interpolation and Ray Identity 38

6 Ocean Model 39

6.1 Ocean Depth . 39

6.2 Ocean Sound Speed . 40

6.3 Ocean Volume Attenuation . 40

6.4 Surface and Bottom Models . 40

6.4.1 Reflection Coefficients . 41

6.4.2 Bistatic Scattering Strength 42

6.4.3 Boundary Classes . 42

6.5 Volume Scattering Strength . 43

7 Sonar and Source Models 44

7.1 Trajectories and Coordinate Transformations 45

7.2 Beam Patterns . 46

7.3 Sonar Transformation . 48

7.4 Source Transformation . 48

8 Direct Sound Propagation Models 49

8.1 DirectSignal . 50

8.2 DirectSpectrum . 50

TR 0404 v

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

9 Target Echo Model 51

9.1 Target Models . 52

9.1.1 PointTarget . 52

9.1.2 HighlightTarget . 53

9.1.3 ExternalTarget . 53

10 Reverberation 54

10.1 Generating Reverberation . 55

10.2 Computing the Scattering Function 56

11 Summary and Plans 58

REFERENCES 61

vi TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

List of Figures

1 SST Component Models . 8

2 Total Signal for Pursuit Example . 11

TR 0404 vii

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

List of Tables

1 Signal Classes . 22

2 Spectrum Classes . 23

3 Scattering Function Classes . 23

4 Window Function Classes . 32

5 Surface and Bottom Models . 43

6 Beam Pattern Models . 47

viii TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

1 Introduction

1.1 Purpose

The Sonar Simulation Toolset (SST) is a computer program that produces simulated
sonar signals as “heard” by a user-specified active or passive sonar in a user-specified
ocean environment. It enables a user to create an “artificial ocean” that may be used
to test new or proposed sonar systems or tactics, to train sonar operators, to plan
experiments, or to validate models of underwater acoustic phenomena by comparing
simulation results with measurements.

This paper focuses on the science, mathematics, and algorithms used in SST. It is
intended, in part, as a tutorial to introduce scientists and engineers to the technical
issues that must be addressed by any sonar signal simulation system. It is also
intended as a supplement to the existing SST documentation, adding information
on “how it works” and “why” to the existing descriptions of “how to do it”. And
it is intended to help scientists, engineers, trainers, and technical managers decide
whether SST might be useful in their projects.

This report started as an on-line, extended version of a paper for the classified US
Navy Journal of Underwater Acoustics. To enable wider distribution, that paper’s
sensitive “Applications” section is omitted here. Because it is intended to be used as
an integral part of the SST documentation, this report contains software-specific de-
tails that were omitted from the JUA version. It contains several features to enhance
on-line browsing, including active (click-through) references to equations, figures, re-
lated text sections, and citations. This report will be updated often as the software
changes.

A separate on-line document, the SST Web [SST Web], gives details about how to
use SST. It includes working examples of SST simulations for several different kinds of
active and passive sonar systems. Yet another on-line document, which is generated
from the source code and comments therein using the Doxygen [Doxygen] software,
covers the internal design of SST.

The SST software, together with all of the documentation just mentioned (in-
cluding this report), are delivered to DoD agencies and contractors via a secure Web
site [APL SBU].

We will assume that the reader is familiar with underwater sound at the level
of [Urick 1983], and with digital sonar processing at the level of Knight et al. [Knight

TR 0404 1

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

1981]. It will be helpful, but not required, for the reader to be familiar with discrete-
time signal processing [Oppenheim Schafer 1989] and the fundamentals of object-
oriented software design [Page-Jones 2000].

1.2 Objectives and Attributes

SST is certainly not the only sonar simulation system available to the Navy commu-
nity. It may or may not be appropriate for a given application, depending on the
purpose of the simulation. General modeling tools like CASS [Weinberg et al. 2001]
or SWAT [Sammelmann 2002], real-time simulators like WAF [Correia 1988, Katyl
2000], tactical simulators like TRM, or application-specific tools may have a place in
a simulation tool kit. To understand where SST fits, consider the following objectives
and attributes of SST:

Signal Level Simulation: SST produces sound, suitable as input for users’ ears,
for the front end of a sonar system, or for a computer model of an existing or
proposed sonar front end. It does not produce plots or predict performance by
itself.

Portable: SST is designed to run on nearly any modern general-purpose computer.
Each distribution includes pre-built versions for SPARC/Solaris, Intel/Linux,
and Intel/Windows/Cygwin [Cygwin] systems, plus source code and porting
tools to make it as easy as possible to port it to other systems.

General: SST is suitable for simulating a wide variety of active or passive sonar
systems, sound sources, and targets in many different environments and scenar-
ios. Multiple sound sources, multiple targets, complicated sonar systems and
signals, arbitrary trajectories, variable bathymetry, various surface and bottom
models, and many other details can be specified using SST’s flexible command
language.

Broadband: SST is suitable for signals of any bandwidth. The frequency range is
limited primarily by its ray-based propagation models, which can be useful as
low as a few kHz in shallow water or even lower in deep water, depending on
the requirement for fidelity.

Multistatic: There can be any number of sound sources, receivers, and targets on
any number of platforms.

Multi-channel: The sonar can have any number of channels, each of which is char-
acterized by its own sensitivity pattern and offset. A channel may represent the

2 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

signal behind one transducer (element-level) or for one beam behind the beam
former (beam-level). Correlations between channels are carefully controlled.

Non-Real-Time: SST is not constrained to run in real time.

Flexible Fidelity: SST’s lack of real-time constraint allows the user to trade off
speed for fidelity and detail, striking whatever balance is consistent with the
user’s requirements, budget, and patience. The idea is to support whatever
level of fidelity and detail is required for each application, without unnecessarily
slowing the simpler simulations. The level of realism can, if necessary, be quite
high, and simple simulations can achieve much faster than real-time throughput.

Embeddable: SST may be used as a signal generation component within a higher-
level simulation. It is being used that way within TRM at ARL-PSU.

Streamable: SST’s results are produced in time order. The early parts of the output
are written as soon as possible, usually well before the simulation is finished.
This feature is essential for embedded applications and for parallel processing
(currently in development), and it helps minimize memory requirements for
long runs. Another advantage is that users can examine partial results before
deciding whether to continue a long simulation run.

Object Oriented: SST’s command language, its primary implementation language
(C++), and SST’s design are organized around the concepts of objects, classes,
encapsulation, inheritance, and polymorphism. The advantages of this approach
are documented in standard software engineering texts [Page-Jones 2000].

Unclassified: SST’s distribution is limited to DoD and DoD contractors only (crit-
ical technology), but the code and documentation are not classified.

1.3 History

Most of the support for SST’s development has come through projects supporting
specific applications. Hence SST’s current capabilities reflect, to a dominant degree,
the union of the requirements specified for those applications. In response to changing
requirements, innovations were introduced in roughly the following order:

• SST’s roots trace back to the REVGEN (Reverberation Generator) [Princehouse
1975,Princehouse 1978,Goddard 1986] project of the 1970s and early 1980s. SST
itself started in 1989. The focus was on high-frequency, narrow-band, monos-
tatic active sonar systems. The initial few versions generated reverberation and
target echoes using a narrow-band point scatterer model (Sec. 10).

TR 0404 3

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

• In the early 1990s the emphasis shifted to broadband sonars. This led to up-
dated high-frequency environmental models [APL Models 1994], an optional
scattering-function reverberation model [Luby Lytle 1987], frequency-dependent
environmental models and beam patterns, and the “data flow” architecture
(Sec. 4.3).

• Another thrust during the middle 1990s was toward multistatic operation.
SST’s monostatic reverberation models were replaced by a fully bistatic, broad-
band one based on scattering functions (Sec. 10). Bistatic surface and bottom
models were also introduced (Sec. 6).

• During this period, both the number of SST users and the size and complexity
of the code rose dramatically. In response, we replaced the earlier text docu-
mentation with an extensively cross-linked HTML Web version [SST Web], and
C++ replaced C as the primary programming language.

• Starting in 1997 several applications involved frequencies below 10 kHz. This
led to a new mid-frequency bistatic surface model [Gilbert 1993], an upgraded
bottom model, an external target model (Sec. 9.1.3), and better support for
passive sonars.

• The Navy’s concern shifted from deep water to littoral environments. In re-
sponse, we added support in SST for range-dependent propagation using eigen-
rays computed using the GRAB [Weinberg Keenan 1996] eigenray model.

• In broadband, shallow-water applications, SST users recognized that the pro-
cessing gain for simulated target echoes versus reverberation and countermea-
sures was too optimistic. The main culprit was identified as near-specular scat-
tering from the surface and bottom. In response, we added time and frequency
spreading (reduced coherence in frequency and time) (Sec. 11).

• Several users wanted to use SST as a signal generation component in a higher-
level tactical simulation. Other users wanted to use some of SST’s models in
other environments. These requirements have led to a continuing push toward
interoperability.

• Current efforts, driven by user concerns, include improved coherence control,
faster element-level simulations for systems with a very large number of hy-
drophones, user interface support for combined active and passive processing,
ship wakes, very long active transmissions, and better realism at lower frequen-
cies.

• Everyone always wants more speed, better documentation, fewer software er-
rors, a simpler and more intuitive user interface, more checks to prevent user

4 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

mistakes, interoperability with other systems, and more and better support for
users. We are constantly working to improve SST and our services in all of
these measures.

SST has played a significant role in many studies over the years. Unclassified
published ones include [Eggen Goddard 2002], [Goddard 2000], and [Rouseff et al.
2001].

1.4 Release

The version of SST described here is Release 4.1, dated November 2002.

1.5 Outline

Section 2 is a general overview of SST and its component models. Section 3 presents
a simple example showing the results of an SST simulation. The bulk of the paper
describes the science and mathematics underlying SST. The order in which SST’s
various sub-models are described is intended to support linear reading by placing
the background needed to understand a model’s requirements before that model’s
description. We conclude, in Section 11, with a brief description of current and
planned projects to improve SST’s realism, scope, and ease of use.

1.6 Notation

In nearly all of this paper, we treat the signals, transformations, and models as
continuous in time, space, frequency, and direction. This is a physicist’s point of view,
not a software engineer’s. Of course, as in any digital implementation, conceptually
continuous functions are sampled at discrete values of their independent variables,
and integrations are implemented as finite sums, and precision is limited. We discuss
digital samples when it is necessary to do so. In our view, however, the physical
and mathematical concepts are easier to understand in the continuous domain, so
we remain there whenever possible. The mapping between continuous and digital
domains is covered well by standard texts [Oppenheim Schafer 1989,Hamming 1973].

SST is object oriented on two levels, the SST command language and the imple-
mentation language. For the most part, an SST input file consists of statements that
define objects that are instances of built-in SST classes, and assign values to named

TR 0404 5

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

attributes (parameters) of those objects. Each of the classes visible through the
command language is implemented in terms of a C++ class having the same name,
with attributes corresponding to C++ member variables. We do not distinguish here
between the two kinds of classes.

Within paragraph text, class names are displayed in bold sans serif font and
capitalized; examples are Signal, PistonBeam, and JacksonBottom. Names of class
attributes are displayed in slanted sans serif font and uncapitalized; examples are
frequency , radius, and soundSpeedRatio.

2 Overview

2.1 Assumptions

The simulated sound produced by SST consists of a digital representation of the
predicted signal in each channel of the sonar receiver’s processing path. This sound
may contain components from four types of sources:

Discrete sound sources: “Passive targets,” such as ships or countermeasures, that
radiate noise from a compact region

Diffuse sound sources: Environmental noise and self noise

Discrete scatterers: “Active targets,” such as submarines or rocks, that echo an
active sonar’s transmitted pulses (or other sound) back to the sonar receiver

Reverberation: Diffuse scatterers, such as the ocean bottom, that send back many
overlapping echoes of an active sonar’s pulse

The sonar system can be passive (receiver only), or it can be active (listening for
echoes of its own transmissions). Active sonars can be monostatic (transmitter and
receiver on the same platform), bistatic (transmitter and receiver on two different
platforms), or multistatic (employing several transmitters or receivers).

The receiver can have any number of channels (transducers or beams). There
can be any number of sound sources and targets, and any number of sound paths
(eigenrays) connecting sources, scatterers, and receivers. For both passive and active
sonars, the signals can have an arbitrarily wide range of frequencies. The ocean,
sound scatterers, and beam patterns act as filters that alter the frequency content of

6 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

the sound. Transmissions and listening intervals can be arbitrarily long. Of course,
all of these parameters will have an impact on size and speed, so the practical limits
depend on available disk space, memory, processor speed, and the patience of the
user.

Over the last decade, SST’s most active users (and most of its financial support)
have come from the torpedo development community. Therefore, its high-frequency
environmental models are more complete and up-to-date than its lower-frequency
models. The current propagation models are based on eigenrays, not on direct solu-
tions of the wave equation. These factors limit the realism of SST’s simulations for
low frequencies, especially in shallow water.

2.2 Outputs

SST’s primary output is multi-channel sampled sound: a digital representation of
the simulated signal somewhere in the sonar receiver. A channel can represent either
the signal behind a transducer (for element-level simulations) or an output of the
beamformer (for beam-level simulations).

SST can also produce several other types of data, including the reverberation scat-
tering function, various types of spectra and cross-spectra, and synthesized signals
intended for use as transmissions or noise sources. Some of these are intermediate
products used in the simulation, and some result from general-purpose signal process-
ing tools (like a spectrum analyzer) that the user can apply to any signal.

These simulated signals and related data can be written into an external file in
any of several user-specified forms, binary or text. Any of these forms can be read
by SST as well as written. The ways that SST can represent or store signals are
described in Sec. 4.

SST does not produce plots or other displays. Post-run analysis and plotting can
be done using commercial packages like Mathematica [Mathematica] or Matlab [Mat-
lab], or public-domain tools like Octave [Octave] or Gnuplot [Gnuplot], specialized
tools like the SIO package from Scripps [Hodgkiss 1989], or many other tools. A large
and growing set of useful Matlab scripts are provided with SST.

2.3 Inputs

The primary inputs to an SST simulation consist of commands for generating the
various types of signals, plus assignment statements in which the user specifies the

TR 0404 7

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Figure 1: SST Component Models

Ocean

Sound
Speed

Absorption

Boundary
Reflection

Scattering

Sonar Transmitter

Trajectory

Beam(freq)

Signal

T

Sonar Receiver

Beam(freq)

R

R
Trajectory Signal

Eigenray

delay, loss(freq), directions

Target

Trajectoryhighlights

Source

TrajectorySignalBeam

Filters,
Delays

Reverberation

Target Echo

One-way Signal

Generate
Broadband Noise

Spectra

Any External Signal

Bathymetry

characteristics of the ocean environment, the sonar transmitter and receiver, active
and passive targets, and the format of the simulated signal. These specifications and
commands are expressed in a simple but flexible language with an object-oriented
flavor reminiscent of Python or C++. They may be entered from the keyboard,
read from text files, or passed via a pipe from a higher-level program. The language
supports user-defined variables and comments to help make the scripts readable.

Signals used as transmissions or noise sources can come from external files having
the same file formats as SST’s outputs. SST also includes tools for specifying and
generating these signals internally (Sec. 4.6).

Eigenrays and beam patterns can come from external files, text or binary.

2.4 Models

SST is based on a large number of underlying models — mathematical representations
of physical phenomena — which specify how each element of the environment affects
the sound. Figure 1 summarizes those component models and the relationships among
them.

8 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Eigenray Model: SST’s sound propagation models are based on eigenrays —
paths through the water along which sound propagates between two specified end-
points. Sound in the neighborhood of a receiver or scatterer is a sum of copies of the
original transmitted sound, each of which arrives at a different time from a different
direction, and each of which has been attenuated in a frequency-dependent way. SST
provides three choices (plus variants) for eigenray models: a straight-line model with
reflections (the base class), one based on eigenrays from the GRAB eigenray model
in the CASS software, and one based on any of several eigenray models provided by
the GSM software. The eigenray models are discussed in Sec. 5.

Ocean Model: The SST user specifies the ocean environment by describing
characteristics of the surface and bottom, the depth, the volume scattering strength,
and the sound speed and absorption rate of the water itself. These models act as
inputs to the eigenray model and the reverberation model. The various components
of the ocean model are discussed in Sec. 6.

Sonar and Source Models: The sonar receiver is specified by giving its trajec-
tory through the water, the location of each channel’s phase center, and the beam
pattern giving each channel’s sensitivity versus direction and frequency. Each discrete
sound source is described in terms of its trajectory, the signal it transmits, and the
directional behavior of the transmission (beam patterns). An active sonar’s transmit-
ter is treated just like any other sound source; hence the “Sonar Transmitter” model
in Fig. 1 is the same as the “Source” model. These models are discussed in Sec. 7.

Target Model: Each target (for active sonars) is an object (with a trajectory)
that receives a signal from a source and re-transmits it to a sonar; hence it acts like a
group of receivers and sources back to back. Several target models are available; each
one provides a different way to specify the relationship between the received sound
and the re-transmitted sound. The current target models describe that relationship
in terms of highlights. They are described in Sec. 9.1.

Direct (One-way) Sound Propagation: The heavy arrows in Fig. 1 represent
the various ways that a source signal is transformed on its way to being received by
a sonar system. The simplest one, marked “One-way Signal” on the diagram, is also
called “direct” sound propagation. This transformation combines properties of the
source model, the eigenray model, and the sonar model, and reduces them to a set of
filters and delays that transform the signal emitted by a source into the signal received
by a sonar via paths that may involve reflection and refraction but not scattering.
This transformation is described in Sec. 8.

Target Echoes: The heavy arrows in Fig. 1 marked “Target Echo” represent
sound that scatters from a discrete target. It is essentially two “one-way signals” in
series, with the target model in between. This transformation is described in Sec. 9.

TR 0404 9

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Reverberation: The heavy arrows in Fig. 1 marked “Reverberation” represent
sound that scatters from a very large number of very small scatterers distributed
throughout the environment. This is conceptually very similar to a lot of target
echoes, but SST treats them statistically, so the implementation of the transformation
is quite different from target echoes. Reverberation is described in Sec. 10.

Noise and Other Sound: Sound from any source can be added to SST’s one-
way signals, target echoes, and reverberation. SST can produce broadband Gaussian
noise having a user-specified power spectrum, as described in Sec. 4.6.1; this type of
noise is useful to represent ambient noise, self-noise, and electronic noise. Broadband
Gaussian noise can also be used as the emission from any sound source, for which it
may be combined with harmonic families of tones or active transmit pulses. Signals
for any of these purposes may be generated internally by SST, or read in from an
externally generated file.

Signal Processing: All of the signal transformations are built on top of a di-
verse set of general-purpose signal processing tools for generating, summing, filtering,
delaying, scaling, Fourier analyzing, and otherwise transforming signals. All of these
signal processing tools can be hooked together like plumbing, or they can be used sep-
arately. The “data flow” architecture that makes this flexibility possible is described
in Sec. 4.3, and the components themselves are described in Sec. 4.4.

2.5 Units and Coordinate Systems

In SST and in this paper, acoustic pressure is expressed in micro-Pascals (µPa),
acoustic intensity is in µPa2 or in dB//µPa2, and angles are in degrees. All other
measurements are expressed in MKS units.

In the Earth-centered coordinate system, vector components are in the order
(North, East, Down) with an origin at an arbitrary point on the surface of the ocean.
Earth curvature is ignored, except insofar as it is included in the CASS and GSM
eigenray models (Sec. 5). In platform-centered coordinate systems (used for beam
patterns, element offsets, and target highlights), vector components are in the order
(Forward, Starboard, Below) relative to an arbitrary origin on the platform (sonar,
source, or target). The mapping between the two types of coordinate systems is
defined by the trajectory attribute of the vehicle, as described in Sec. 7.1.

10 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Figure 2: Total Signal for Pursuit Example

Ti
m

e
(s

)

Frequency (kHz)

Total Signal, Ping 1

29 29.5 30 30.5

0.5

1

1.5

2

2.5

3 10

20

30

40

50

60

70

80

40 60 80 100

0.5

1

1.5

2

2.5

3

Level (dB // uPa2)

2.6 Computers

This release of SST has been tested on SPARC/Solaris and Intel/Linux computers.
An Intel/Windows port under the Cygwin [Cygwin] environment is planned. SST is
designed to be portable, and previous versions of SST have been ported to several
other UNIX-like systems.

TR 0404 11

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

3 Example

Figure 2 is a Matlab display showing the result of SST’s “Pursuit” example, which
is one of the standard examples provided with SST. The Pursuit scenario features
a monostatic, high-speed, torpedo-like active sonar chasing after a submarine-like
target. SST produced the multi-channel signal heard by the sonar, which includes
the target echo, reverberation, and noise produced by the fleeing target. The Matlab
scripts that produced the figure sliced that signal into short segments, computed
the power spectral density for each segment, and displayed the results, both as a
time-dependent spectrum and as total signal level.

The dominant feature in the figure is the reverberation, which comes primarily
from the surface in this scenario. The early part of the signal comes from almost
directly overhead, via the sidelobes of the beam pattern; hence it has very little
Doppler shift. The later part of the reverberation comes from the main lobe, almost
straight ahead; hence it has a high upward Doppler shift (the main ridge down the
middle of the spectrum). This obvious “reverberation hook” from low early Doppler
to high late Doppler is characteristic of forward-looking sonars. Less obvious is the
streak that starts at about 0.9 seconds and merges with the main ridge; that comes
from a path that reflects from the bottom.

The target echo is the blip just after 1.0 second and just above 29.5 kHz. It has
a lower Doppler shift than the main reverberation ridge because it is running away.
This is an “easy” high-Doppler detection despite the fact that the level of the target
return is well below the level of the reverberation (the target doesn’t show at all on
the level plot on the right).

Note that this is a very simple analysis of a very simple scenario. Only one channel
is shown (although the receiver in the example has 5 channels); complications like
inter-channel correlations are in the SST-generated signal but not shown by this
analysis. The pulse is a narrow-band pure tone, so the Fourier analysis used here is
nearly optimal; a broadband pulse would require more complex analysis, probably
featuring replica correlation. The sonar is monostatic, and only a few eigenrays are
significant. These limitations are not imposed by SST, which can support much more
complicated scenarios requiring much more complicated processing, both by SST and
by the post-processing algorithms needed to analyze the results.

The SST script for this example can run in a few seconds on a modern workstation
— close to real-time throughput (but not real-time in terms of response deadlines).
More complicated scenarios would take more time.

12 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

4 Signals and Signal Transformations

The inputs, outputs, and much of the intermediate data of SST consist of signals.
In this section we address the question, “What is a signal?” from several points of
view, including abstract meaning, sampled representations, and software components.
These issues are addressed early because they form the scaffolding on which much of
the SST system is built.

4.1 Signal Representations

Conceptually, a signal xc(t) is a continuous, band-limited, multi-channel function of
time t, with channels indexed by c. A signal may represent (for example) voltage on
a set of wires or sound pressure at a set of locations in the water. Within SST each
signal is represented as a sequence of sets of sample values xc(tn) corresponding to
discrete values tn of the time. SST supports three distinct, equivalent representations
of a signal: real samples, complex envelope, and windowed frequency domain. All
signals in SST, whether they are used for input, output, or in between, are represented
in one of these three ways.

4.1.1 Real Samples

The most straightforward way to represent a real signal xc(t) in SST is as a sequence
of real samples on a uniform grid of time values:

xc(tn) = xc(t0 + nh), (1)

where n is an integer and h is the time increment between samples.

If the Fourier transform of the original continuous signal xc(t) is negligible for
frequencies greater than some maximum frequency Fmax, and the sample interval h
is chosen such that Fmax is within the Nyquist band:

h < 1/(2Fmax), (2)

then the original signal can be recovered (in principle) using band-limited interpola-
tion:

xc(t) =
∞∑

n=−∞

(
sin(π(t− tn)/h)

π(t− tn)/h

)
xc(tn). (3)

TR 0404 13

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

The problematic infinities and long decay time of this equation will be dealt with in
Section 4.5.1, when we describe the delay algorithm.

SST Class: The base class from which all time-domain signals are derived is
Signal, which has attributes frequency , isComplex , and times. To specify the real
sample representation in any class derived from Signal, set isComplex to false and
times to a UniformGrid specifying the sample times. More details about this family
of classes will be given in the subsections 4.3 and 4.4 below.

4.1.2 Complex Envelope

For a band-limited signal, a bandwidth W and a center frequency F exist such that
the Fourier transform of the signal is negligibly small outside the frequency range
Fmin = F − W/2 to Fmax = F + W/2. If W is sufficiently small compared to F , it
is often advantageous to express such signals in complex envelope notation [Knight
1981]. The real-valued signal xc(t) is expressed in terms of a complex envelope x̃c(t):

xc(t) =
√

2<
(
x̃c(t) e2πiFt

)
. (4)

The inverse transformation is (ideally)

x̃c(t) =
√

2
[
xc(t) e−2πiFt

]
LP

, (5)

where <() denotes the real part of a complex number, and the subscript LP denotes
application of an ideal low-pass filter with a passband of −W/2 to W/2 and unity
gain. The complex envelope x̃c(t) is advantageous because it varies much more slowly
with time than does the real signal xc(t) (to the extent that W � F). The complex
envelope may be sampled and interpolated using Eq. (3) just like the original real
signal, but now the maximum sample interval h required to fully recover the signal is
determined by the bandwidth, not the maximum frequency Fmax:

h ≤ 1/W, (6)

i.e., the Nyquist band extends from F − 1/(2h) to F + 1/(2h). As a general rule,
the complex envelope notation is advantageous whenever the ratio of bandwidth to
maximum frequency is less than about 25%.

Normalization: The constant
√

2 in Eqs. (4) and (5) is chosen to preserve power:
Av {|x̃c(t)|2} = Av {[xc(t)]

2}, where Av {} denotes a time average.

SST Class: To specify the complex envelope representation in any class derived
from the base class Signal, set frequency to the center frequency F , isComplex to true,
and times to a UniformGrid specifying the sample times.

14 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

SST Class: Transformations between real samples and complex envelope samples
are implemented in SST class ResampleSignal, which uses approximate forms of
Eqs. (4) and (5) employing window functions to combine finite-length filters with
finite-order interpolation.

4.1.3 Windowed Frequency Domain

The third signal representation used in SST is a windowed frequency domain form.
Currently, the primary application for the windowed frequency domain representation
is in the implementation of class DirectSpectrum, which will be discussed in Sec. 8.

Conceptually, we break the continuous signal into blocks of a convenient size (one
per update cycle) and perform a Fourier transform on each block. To avoid end effects,
we enlarge the blocks so that they overlap, and multiply each one by a smooth “pre-
window function” w(t) whose properties are specified below. The transformation
starting from a continuous signal is

Xc(f, tu) =

∫ ∞

−∞
w(t− tu) xc(t) e−2πif(t−tu) dt, (7)

where the index u labels an update time on a uniform grid with interval ∆:

tu = t0 + u∆. (8)

Note that the update interval ∆ is normally much larger than the signal sampling
frequency h used in Eq. (1).

The inverse operation, from windowed frequency domain to continuous signal,
involves an inverse Fourier transform, multiplication by a “post-window function”
w′(t), a time shift, and a summation:

xc(t) =
∑

u

w′(t− tu)

∫ ∞

−∞
Xc(f, tu) e2πif(t−tu) df. (9)

Of course, in the computer Xc(f, tu) is sampled on uniform grids in two dimensions,
frequency f and update time tu. For real signals the values of Xc(f, tu) for negative
frequencies are not stored because

Xc(f, tu) = X∗
c (−f, tu), (10)

where the asterisk represents complex conjugation.

TR 0404 15

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

The requirement that Eqs. (7) and (9) are inverses of one another imposes the
following requirement on the two window functions:∑

u

w′(t− tu) w(t− tu) = 1 (11)

for all times t. Typically, the pre-window w(t) is a Hann (cosine squared) window,
and the post-window w′(t) is rectangular. We will return to window functions at the
end of this section.

Normalization: The sampled version of Xc(f, tu) is normalized such that it
converges to Eq. (7) as the sampling interval h → 0.

SST Classes: To specify a signal in windowed frequency domain form, use a
subclass of class Spectrum with attributes isPower = false, isComplex = true, and
isCorrelated = false. Attributes times and frequencies are Grid objects (Sec. 4.8)
specifying the update times tu and the frequencies f where the spectrum is sampled.

The transformations defined in Eqs. (7) and (9) are implemented by SST classes
SpectrumFromSignal and SignalFromSpectrum, respectively.

4.2 Second Moment Time Series: Power Spectra and Scat-
tering Functions

Each of the three representations in the previous subsection is “complete” in that it
carries enough information to uniquely specify a continuous signal. SST also supports
two types of time series, power spectra and scattering functions, that represent second-
order statistical descriptors of a signal. These are “incomplete” in that they do not
support unique reconstruction of the original signal.

4.2.1 Power Spectra

The power spectral density (PSD) of a stationary random signal is normally defined as
the expectation of the Fourier transform of the autocovariance of the signal. For multi-
channel signals, this definition is easily generalized to include covariances between
channels. For nonstationary signals or those with non-random components (e.g.,
tones), the definition must be modified further to bring in window functions to ensure
that the result is finite and to restrict it to a time interval over which the spectrum
can be considered quasi-stationary.

16 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

A useful estimator of the PSD for multi-channel, non-stationary signals should
be defined and normalized in such a way that it approximates the true PSD in cases
where the signal is random and stationary. The expectation value of such an estimator
is

Pcc′(f, tu) =
E {Xc(f, tu) X∗

c′(f, tu)}∫ ∞
−∞ |w(τ)|2 dτ

, (12)

where Xc(f, tu) is given by Eq. (7), w(τ) is the window function used in that equation,
and E {·} denotes the statistical expectation value. For signals in µPa, the units of
Pcc′(f, tu) are µPa2/Hz . The diagonal elements (c = c′) are measures of the power per
unit frequency in a given channel in the neighborhood of the update time tu, where the
neighborhood is defined by the weighting function w(τ). The off-diagonal elements
(c 6= c′) are measures of the cross-correlation between channels versus frequency in
the same neighborhood.

For stationary signals, Eq. (12) gives the true PSD convolved with the PSD of the
window function w(τ). Hence the interpretation of Eq. (12) as a “time dependent
PSD” is most meaningful if the time series is random and a window function w(τ)
can be found that satisfies both of the following conditions:

• The time series xc(t) is quasi-stationary over the time interval where the window
function w(τ) is significantly nonzero.

• The power spectrum Pcc′(f, tu) is quasi-stationary in frequency f over a fre-
quency interval whose width is that of the interval in which the Fourier trans-
form of the window function is significantly nonzero.

The first criterion favors short windows (in the time domain), whereas the second one
favors long windows. As a practical matter, Eq. (12) is a “good” PSD estimate if the
window length lies within a range of window lengths over which the result doesn’t
depend strongly on the window length.

SST Classes: SST class Spectrum is the base of a hierarchy from which all
spectra derive — both complex vector-valued amplitude spectra Xc(f, tu) and matrix-
valued power spectral densities Pcc′(f, tu). Their primary common feature is that
they represent functions of both time and frequency. The two types of spectra are
distinguished by a Boolean attribute isPower . More details about this family of classes
will be given in subsections 4.3 and 4.4 below.

SST Classes: Equation (12) (omitting the expectation value operator) is imple-
mented by SST class SpectrumFromSignal with attribute isPower set to true. (With
isPower set to false, that class implements Eq. (7).)

TR 0404 17

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

4.2.2 Scattering Functions

A scattering function Zrr′s(Γ, f, T) can be thought of as a generalization of the in-
tensity impulse response function [Dahl 2001] for reverberation — generalized in that
it includes Doppler spread, frequency dependence, and inter-channel correlation as
well as time spread. It expresses the relationship between the PSD of a source signal
and the PSD of the resulting reverberation signal received by a multi-channel sonar
receiver. The details of that relationship are the subject of Sec. 10. For now, just
consider it a matrix-valued function of Doppler shift Γ, frequency f , and two-way
travel time T , for a given source channel s, where the function value is a non-negative
definite square matrix (indices rr′) whose dimension is the number of receiver chan-
nels. The Doppler shift Γ is defined as the ratio of received frequency to transmit
frequency, which can differ from unity due to motion of the source, receiver, and
scatterers. The scattering function is introduced here because it shares the data-flow
design of signals and spectra, as outlined in the following subsection.

SST Classes: SST class ScatFun is the base of a hierarchy from which all scat-
tering functions derive. All of them represent matrix-valued functions of Doppler,
frequency, and time. More details about this family of classes will be given in the
next two subsections and in section 10.

4.3 Data Flow Design

All of the SST classes that produce, modify, and store time series are based on a
data flow design. They represent continuous functions of time, sampled on a uni-
form grid of time values. Each data-flow class is based on one of three base classes:
Signal, which depends only on time, Spectrum, which depends on both frequency
and time, and ScatFun (a scattering function), which depends on Doppler, frequency,
and time. Subclasses within each hierarchy differ according to how samples are stored
or computed. From the common “data flow” point of view, all such classes produce
and/or consume a block of numbers (samples) for each value of time in some uniformly
increasing sequence of times.

The samples themselves, however, may or may not be contained within an object
of one of these classes. Instead, these objects should be regarded as sources or sinks
of samples, which can be made to produce or accept blocks of samples, in time order,
in response to readBlock or writeBlock requests on the object. Creating an object or
assigning it to a variable merely establishes a link, and perhaps a path along which
the samples will flow.

18 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Most of SST’s work is done under control of a CopySignal command, which simply
reads successive blocks of data from one data-flow object and writes the resulting data
into another such object. The object on the “write” side of a CopySignal command
is typically rather simple: It just stores the data in a file or memory buffer in some
specified format. The processing on the “read” side of a CopySignal command can
be much more complex. Data-flow objects are typically organized into a network, in
which each object might contain references to other data-flow objects that supply its
inputs. For example, an object of class VarDelay contains references to at least two
other data-flow objects: one to supply the signal to be delayed, and one to supply
the time-varying delay by which the first signal is to be delayed.

The protocol is common to all such objects: In response to a “read” request, each
object figures out which data it needs from each of its input data-flow objects, and
issues corresponding “read” requests. These requests propagate upstream until they
reach a “leaf” object that can satisfy its request, for example by computing its output
or reading from a file. The resulting data propagate downstream as the requests are
satisfied, as each object uses data from its input data-flow objects (if any) to compute
its output. Eventually the block originally requested by the CopySignal command is
stored by the object on the “write” side of the command, and the cycle repeats for
the next block.

The following very simple SST script illustrates the concept:

Variable Delay Example

insig = HarmonicFamily{

isComplex = false

times = UniformGrid:{ first=-2; last=5; rate=8000 }

fundamental = 220 #Hz

harmonics = (

number ampDB phaseDeg

1 -3 0.0

2 -6 90.0

)

}

delay = InternalSignal{

isComplex = false

times = UniformGrid:{ first=0; last=5; interval=1 }

buf = (1.00 1.10 1.25 1.45 1.7 2.0)

}

outsig = SoundSignal{ file = "myDelayedSignal.snd" }

delayGenerator = VarDelay {

TR 0404 19

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

isComplex = false

times = UniformGrid:{ first=0; last=5; rate=8000 }

inSignal = insig

commonDelayBuf = delay

}

CopySignal delayGenerator outsig

This fragment creates four objects of various subclasses of Signal, and assigns
them the user-selected names insig, delay, outsig, and delayGenerator. The VarDe-
lay requires two input Signal objects as attributes: inSignal specifies the signal to
be delayed, and commonDelayBuf specifies a time-dependent delay to be applied to
all channels. In this case, the signal to be delayed consists of a HarmonicFamily
specifying two tones sampled at 8 kHz, and the delay is an InternalSignal specifying
a steadily increasing delay, sampled once per second.

The main point of this example is that, until the final CopySignal statement,
the only object that contains samples of a signal is the InternalSignal called delay.
The other objects merely specify how signals are to be produced or stored. The
CopySignal statement works essentially like this: First CopySignal calls openRead
on the input signal and openWrite on the output signal to get things started. Then
it executes a loop that reads a block from delayGenerator, writes the result to outsig,
and repeats. At the end of the input signal, it calls the close method on both input
and output signals to shut them down. We have omitted complications related to
starting, stopping, and managing buffers, but the central loop of CopySignal reduces
to readBlock, writeBlock, repeat. Each subclass of Signal implements these operations
in its own way:

• VarDelay::readBlock reads the necessary samples from each of the inputs (the
delay and the signal to be delayed), interpolates the delay and the input signal
to implement the delay, and returns the results. The block requested from the
input signal is earlier than the output times, depending on the delay.

• HarmonicFamily::readBlock computes the requested samples and returns them
to the caller.

• InternalSignal::readBlock returns the requested samples from its internal buffer.

• SoundSignal::writeBlock writes the samples into a file in a form that most
computers can play through their speakers.

20 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Requests for data propagate up the chain of readBlock operations and the results
propagate back down, with a transformation at each step. The result, in this example,
is an audio file with tones that get lower as the rate of change of delay gets larger.

The pattern illustrated by this example is typical of SST simulations, which have
the following characteristics:

• Data-flow classes belong to any of three hierarchies, based at classes Signal,
Spectrum, or ScatFun. All of them represent continuous functions of time.
The three hierarchies differ in whether they depend on frequency or Doppler as
well as time. Subclasses within each hierarchy differ according to how samples
are stored or computed.

• Data-flow objects can represent nearly any time-dependent quantity, including
some that are not normally considered “signals”. These include the time-varying
delay used to control a VarDelay object (as shown in the example above) and
the time-varying filter coefficients used by VarFirFilter.

• Classes that compute samples on demand are read-only ; they implement read-
Block and openRead, but not writeBlock or openWrite. Many of the read-only
objects accept other data-flow objects as attributes; these supply streams of
input samples to be transformed. Chains of transformations formed in this
way can be of any length. Read-only objects can be used as the source of a
CopySignal command or as an input to a transformation.

• Classes that contain or store samples are read-write; they implement both read-
Block and writeBlock operations, plus the openRead and openWrite methods.
They can be used in the same contexts as the read-only objects, and can also
be specified as the destination of a CopySignal command.

• SST’s data-flow processing chains are demand driven: the caller determines
which samples are required, and the called function delivers those samples.
This “pull” model is in contrast to the “push” model used in most real-time
signal processing systems, which are input driven; they process input data as
they arrive.

• The class hierarchies satisfy the Liskov Substitutability Principle [Stroustrup
2000] (mostly): if a role (e.g., an attribute) calls for an object of one of the
three base classes, any member of the same hierarchy can be used there. The
main exception is the obvious one: read-only classes cannot be used as the
destination of CopySignal.

TR 0404 21

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

4.4 Data Flow Classes

The classes shown in Tables 1, 2, and 3 represent various kinds of time series and are
based on data-flow design.

Table 1: Signal Classes
Class Inputs Summary
Signal Base class (abstract): multi-channel func-

tion of time
BareAsciiSignal file Signal in a simple ASCII formatted file
BinarySignal file Signal in a headerless encoded binary file
BroadbandNoise Gaussian noise with given power spectrum
DirectSignal Signal,

Eigenrays
Sound propagated from source to receiver

FIRCoefBuf Spectrum Coefficients for variable FIR filter
FrequencyShiftSignal Signal Frequency-shifted copy of its input Signal
HarmonicFamily Sum of harmonic tones
InternalSignal memory Signal in an internal buffer
LPFirCoefBuf Coefficients for low-pass FIR filter
MergeSignal Any DFs Merges input flows into adjacent channels
ModulatedTone Tone with frequency and/or amplitude mod-

ulation
ResampleSignal Signal Changes isComplex , frequency , times
ReverbSignal ScatFun,

Signal
Generate reverberation sound

SIOSignal file Signal in a binary SIO file (times etc. in
header)

ScaleSignal Any DF Input flow times constant scale factor
SelectChannel Any DF One channel from a data flow
SignalFromSpectrum Spectrum Compute time series from amplitude spec-

trum
SoundSignal file Signal in .snd file format, for listening
SumSignal Any DFs Sum of other data flows
TargetEcho Signal Echo of active pulse from target
VarDelay 2-3 Signals Delay input signal by time-varying amount
VarFirFilter 2 Signals Variable finite impulse response (FIR) filter

In each table the Inputs column gives the types of any stream-like inputs; other
inputs are omitted. Eigenrays are considered stream-like because they generate inter-
nal streams of eigenray properties (loss spectra, delays, and directions), as discussed
in Sec. 8.

22 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Table 2: Spectrum Classes
Class Inputs Summary
Spectrum (abstract) Base class: multi-channel function of fre-

quency and time
AsciiSpectrum file Spectrum in an ASCII text file
BinarySpectrum file Spectrum in a plain binary file
DirectSpectrum Spectrum,

Eigenrays
Spectrum of sound propagated from source to
receiver

FactorSpectrum Spectrum Cholesky factorization (matrix square root)
of a power spectrum

GaussianSpectrum Spectrum Generate Gaussian random realization of a
spectrum

InternalSpectrum memory Spectrum in an internal buffer
ReverbSpectrum ScatFun,

Spectrum
Convolve reverberation ScatFun with pulse
spectrum

SIOSpectrum file Spectrum in a binary SIO file (times, frequen-
cies, etc. in header)

SpectrumFromSignal Signal Analyze a Signal into a time-dependent Spec-
trum

UnfactorSpectrum Spectrum Square a factored Spectrum to get back a
power spectrum

VarSpectFilter Spectrum,
Signal

Frequency Domain Finite Impulse Response
filter

Table 3: Scattering Function Classes
Class Inputs Summary
ScatFun (abstract) Base class: multi-channel function of Doppler,

frequency, and time
AsciiScatFun file A ScatFun in a simple ASCII formatted file
BBBDirectionalScat Eigenrays Broadband Bistatic Scattering Function using

spherical tesselation
BBBScatFun Eigenrays Compute a Broadband Bistatic Scattering

Function
InternalScatFun memory A ScatFun in an internal buffer
SIOScatFun file A ScatFun in a binary SIO file

TR 0404 23

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Classes with “file” or “memory” in the Inputs column are read-write, and the rest
are read-only. The “file” or “memory” referred to in that column can be used for
input, output, or both. The samples in the “memory” classes can be used as input
by setting the values from the command language as in the example in Sec. 4.3; they
can be used as output by printing the object using SST’s print command; or they
can serve as temporary storage, written by one CopySignal command and read by
another. The “file” classes can be uses similarly, except the samples are in a separate
file.

Classes with “Any DF” or “Any DFs” in the Inputs column can accept as inputs
classes from any of the three data flow hierarchies Signal, Spectrum, or ScatFun.
They are “chameleons” that take on the logical character of their inputs. For example,
a SumSignal object that has ScatFun objects as its inputs effectively becomes a
ScatFun, and can be copied into an output ScatFun subclass such as SIOScatFun.
The extra attributes that come with ScatFun (e.g. the dopplers grid) tunnel through
the SumSignal from the inputs to the result. Unfortunately, this masquerade is
incomplete: The chameleon classes can be used as inputs to other chameleon classes
or the CopySignal command (which has a similar chameleon character), and they
can be used anywhere that a Signal is required, but they cannot be used in other
contexts where a Spectrum or ScatFun is required.

A few of the classes in Tables 1, 2, and 3 are high-level classes that are essential
parts of the user’s view of SST. These include BBBScatFun, DirectSignal, Reverb-
Signal, SumSignal, and TargetEcho; each of these classes will be discussed in more
detail in subsequent sections. The rest are storage options, classes used internally
by higher-level classes, and utilities that SST users have found useful. All of them
are available for use by SST users through the command language, and all of them
can be substituted anywhere that an object of the base class is required (subject to
read/write constraints).

4.5 Basic Signal Operations

Signal processing operations are handled by those classes in Tables 1 and 2 that accept
only other signals or spectra as inputs. Some of these have already been described,
and others are simple and obvious. That leaves a few operations that are central to
SST’s operation: delays, filters, and noise generation.

24 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

4.5.1 Variable Delays

Ideally, SST class VarDelay accomplishes the following:

yc(t) = xc(t− Tc(t)), (13)

where xc(t) is the input signal to be delayed (attribute inSignal). The time-varying
delay Tc(t) is the sum of two input Signal objects: a single-channel commonDelayBuf
to be applied to all channels, and a multi-channel channelDelayBuf to be applied
separately to corresponding channels of the signal. Either of the two delays may be
omitted. Typically, the delays vary much more slowly than the signal itself, so the
sampling rate for the delays is much lower than that of the input signal (typically a
few samples per second or less). For example, in one application Tc(t) is the sound
propagation delay along one ray path from the source to the receiver, which changes
with time because the source and receiver are moving.

The algorithm involves two interpolations. First, the delay Tc(t) is interpolated
to the sample times required for the output signal yc(t). Because Tc(t) varies slowly,
this first interpolation is always linear. Second, the input signal xc(t − Tc(t)) is
interpolated to the times given by the output sample times minus the interpolated
delay. Typically this second interpolation must be done using a relatively high order;
i.e., one must make use of a relatively large number of samples of the input signal in
the neighborhood of each desired time t− Tc(t).

The ideal band-limited interpolation formula, Eq. (3), has the disadvantage that it
has a very long decay time — all of the samples in the signal are required to compute
a single interpolated value. The first of two compromises used by class VarDelay is
to introduce a window function to limit the number of samples used:

yc(t) =

M/2−1∑
k=−M/2

d

(
t− tn′

h
+ k

)
xc(tn′ − kh), (14)

where M−1 is the interpolation order (determined by the order attribute of the input
signal xc(t)) and tn′ is the largest input sample time less than the desired time:

n′ = b(t− t0)/hc. (15)

The interpolation weights d(z) are the ideal weights from Eq. (3) multiplied by a
Hann window of length M samples:

d(z) = cos2(πz/M)

(
sin(πz)

πz

)
, (16)

TR 0404 25

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

where −M/2 ≤ z ≤ M/2. When the order is 3 or less (M ≤ 4), polynomial interpo-
lation is used instead of Eq. (16).

The second compromise (if M > 4) is to tabulate the interpolation coefficients to
avoid re-calculating them, using a time grid that is L times finer than the grid used
for the signal:

d(z) ≈ d

(⌊
z

L
+

1

2

⌋
L

)
. (17)

The sub-sampling ratio L can be specified by the user, but the default value of 512
is almost always sufficient.

To determine what interpolation order to use, it is helpful to view the interpolation
algorithm as a band-pass filter. The spectrum of a discrete-time sampled signal
consists of repeated copies of the desired spectrum, one within the Nyquist band
(Eq. (2) or (6)) and others above and below the Nyquist band [Oppenheim Schafer
1989]. Interpolating it to a band-limited continuous signal is equivalent to filtering
out all of the extra copies outside the Nyquist band.

In the ideal version of Eq. (3), the filter has a spectral response of unity throughout
the Nyquist band, and zero elsewhere. Using a window function to reduce the filter
length makes this transition more gradual. The width of this transition zone, for an
M -sample Hann window, is roughly 2.5/(Mh) (from table 7.2 of [Oppenheim Schafer
1989]). Our objective is for the filter to have a spectral response near unity over
the part of the Nyquist band in which the signal has significant power. In addition,
we want the response to decrease to essentially zero at the locations of those extra
copies, outside the Nyquist band, that must be filtered out. In between, near the edge
of the band, a finite-length filter produces an incorrect result — so we must ensure
that there are clear zones near the band edges where the input signal does not have
significant power.

The suggested rule of thumb: if the significant parts of the signal cover a fraction
α of the Nyquist band (in the range F ± α/(2h) for complex signals, or 0 to α/(2h)
for real signals), use an interpolation order M − 1 satisfying

M ≥ 2.5/(1− α). (18)

For example, for the common case of 80% band coverage (α = 0.8), at least M = 13
is required. Even values of M (odd values of the Signal attribute order) are slightly
more efficient, so order should be 13 or more.

The default value of order is 5, which is appropriate for no more than 50% band
coverage.

26 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

4.5.2 Variable Finite Impulse Response Filters

SST needs filters whose spectral response depends (slowly) on time as well as fre-
quency:

yc(t) =

∫ ∞

−∞
hc(τ, t) xc(t− τ) dτ, (19)

where the filter impulse function hc(τ, t) should ideally satisfy

hc(τ, t) =

∫ ∞

−∞
Hc(f, t) e2πifτ df, (20)

where Hc(f, t) is the filter’s specified time-dependent spectral response. This treat-
ment differs from the usual textbook case in that both Hc(f, t) and hc(τ, t) depend
parametrically on time t. As written, this is theoretically sloppy (what does Hc(f, t)
really mean?), but as a practical matter it can be rescued by requiring that the
change in Hc(f, t) is negligible over intervals of t comparable to the range of τ [the
width of the impulse response hc(τ, t)]. Equivalently, we require that the frequency
response Hc(f, t) varies slowly in frequency on a scale given by the inverse of the scale
of its time variation. For example, in one application Hc(f, t) is the sensitivity of a
beam pattern to broadband sound arriving along one ray path from the source to the
receiver, which changes with time because the source and receiver are maneuvering.

To eliminate the infinities in the integration limits (making a finite impulse re-
sponse, or FIR, filter), we use the window method [Oppenheim Schafer 1989]: Eq. (20)
is replaced by

hc(τ, t) = w(τ)

∫ F+1/(2h)

F−1/(2h)

Hc(f, t) e2πifτ df , (21)

where w(τ) is a smooth window function whose length is short compared to the scale
on which Hc(f, t) varies with time t, and whose Fourier transform is narrow on the
scale on which Hc(f, t) varies with frequency f .

The choice of w(τ) enforces the smoothness requirements of the previous para-
graph. The actual frequency response of this filter is the convolution of the desired
frequency response, Hc(f, t), with the Fourier transform of the window, W (f). Hence,
W (f) should have a narrow central peak and low sidelobes. This issue is discussed at
length in signal processing texts [Oppenheim Schafer 1989]. SST uses a Hann (cosine
squared) window.

SST Class: Class VarFirFilter implements the discrete version of Eq. (19), given
an input signal xc(t) and a stream of filter coefficients hc(τ, t) sampled in both τ
and t. Normally the sample interval in t for the coefficients is much larger than the
sample interval common to τ and the signal. For a given lag τ the coefficients are

TR 0404 27

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

interpolated linearly in t between the input samples. The convolution is done directly,
in the time domain, if the filter is short. For longer filters the convolution is done
using fast Fourier transforms (FFTs). The break-even point, determined empirically,
is currently at 48 samples in τ ; the user can adjust it via a global parameter named
firFourierCutoff .

SST Class: Class FIRCoefBuf is a data-flow class whose input stream is a time-
dependent spectrum Hc(f, t) giving the desired filter response, and whose output is
a stream of filter coefficients hc(τ, t). Most of its work is done by class FIRCoef.
Together, these classes implement Eq. (21).

SST Class: Class VarSpectFilter is equivalent to VarFirFilter, except that its in-
put and output signals are in the windowed frequency domain representation (Eq. (7)).
Because FIRCoefBuf uses FFTs whenever it is faster than the time domain implemen-
tation, VarSpectFilter is advantageous only if the input is already in the frequency
domain, or if the desired output is in the frequency domain, or if several filters are
to be applied consecutively and the filters are relatively long. VarSpectFilter is used
internally to implement class DirectSpectrum, which is discussed in Sec. 8.

4.6 Generating Signals

Most of SST is about what happens to signals between a source and a receiver. But
where do the original signals come from? One option is from “outside”: SST can read
signals, spectra, and scattering functions in all of the same file formats that it uses
for writing them (the entries with “file” or “memory” under the “Inputs” column in
Tables 1, 2, and 3). If measured data or externally generated signals are available,
simply put it in one of those forms to use it as an input to SST. If the external signal
isn’t quite right, use SST’s signal processing tools (or external tool collections like
Matlab) to filter, sum, delay, or resample them.

Most SST simulations, however, have no need of external input signals because
SST provides a useful collection of simple tools to generate signals having specified
properties. The remainder of this section outlines those tools.

4.6.1 Generating Gaussian Noise

Gaussian noise with a specified power spectrum can be used as a component of the
signal put into the water by a source like a submarine or ship. To do that, use it as the
signal component of a Source (sec. 7). Such noise can also be used as “background”
noise, including sonar self-noise and other distributed noise sources for which SST

28 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

has no explicit model. To do that, use SumSignal to add it to the output signal from
the simulation.

Given a power spectral density (PSD) Pcc′(f, tu), our objective is to generate a
multi-channel Gaussian random signal xc(t) such that applying Eqs. (7) and (12)
returns a close approximation to the original PSD. Such a signal is a “realization” of
the original PSD. To be more precise, if the expectation operator E {·} in Eq. (12) is
replaced by an average over independent realizations, that average should converge
to the original PSD as the number of realizations increases. This is a well-defined
and common problem for stationary, single-channel signals, and extending the usual
methods to multiple channels is straightforward. Stationary, in this context, means
the PSD Pcc′(f, t) is independent of time t.

To extend it efficiently to a nonstationary PSD, an additional assumption is re-
quired: that an update interval ∆ exists such that the time variation of Pcc′(f, tu) is
slow on a scale of ∆ and the frequency variation is slow on a scale of 1/∆. Under those
conditions, the following variant of the method of Mitchell and McPherson [Mitchell
McPherson 1981] generates acceptable Gaussian realizations of Pcc′(f, tu).

The first step is to factor the PSD: A generator Gcc′(f, tu) is needed that satisfies

Pcc′(f, tu) =
∑
c′′

Gcc′′(f, tu) G∗
c′c′′(f, tu). (22)

This factorization always exists because, for any given frequency f and time tu, the
matrix Pcc′(f, tu) is non-negative definite (its eigenvalues are positive or zero). This
factorization is not unique, and there are several good ways to compute Gcc′(f, tu);
SST uses Cholesky factorization [Golub Van Loan 1996], which is fast, reasonably
stable, and produces a triangular result.

The second step is to multiply the generator by a vector of independent, complex,
unit-variance Gaussian random numbers gc(f, tu)

Xc(f, tu) =
∑

c′

Gcc′(f, tu) gc′(f, tu), (23)

where the random numbers satisfy

E {gc(f, tu)g
∗
c′(f ′, tu′)} = δcc′ δuu′ δ(f − f ′), (24)

where δcc′ is a Kronecker delta function and δ(x) is a Dirac delta function. Of course,
in the discrete domain the Dirac delta is effectively replaced by the Kronecker delta.

TR 0404 29

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

The third step is the same as Eq. (9): Inverse Fourier transform, window, and
add. However, for this application the requirement on the post-window function is∑

u

|w′(t− tu)|2 = 1 (25)

instead of Eq. (11). This is satisfied, for example, by a set of cosine windows with 50%
overlap. However, the Mitchell-McPherson window function [Mitchell McPherson
1981], which also satisfies Eq. (25), has somewhat better spectral properties.

SST Classes: The Mitchell-McPherson method of generating nonstationary Gaus-
sian noise is implemented by the sequence of FactorSpectrum (Eq. (22)), Gaus-
sianSpectrum (Eq. (23)), and SignalFromSpectrum (Eq. (9)). This same sequence
is used within class ReverbSignal to generate realizations of reverberation. For sta-
tionary, single-channel noise, a simpler implementation is provided by class Broad-
bandNoise.

4.6.2 Generating Harmonic Tone Families

Harmonic tone families normally represent machinery noise. The usual way to gener-
ate the noise emitted by a submarine, ship, or weapon is to use SumSignal to combine
several HarmonicFamily objects with a BroadbandNoise object. The result is used
as the signal component of a Source object representing the vehicle.

The signal generated by a HarmonicFamily object has the following form:

x(t) =
∑

n

An cos(2πnf1t + φn), (26)

where the frequency of each term is an integer multiple of f1. The user specifies f1

(attribute fundamental) and a three-column table giving the harmonic number n, the
amplitude in decibels (20 log(An)), and the phase at t = 0 in degrees ((180/π)φn) for
each harmonic.

4.6.3 Generating Modulated Tones

Class ModulatedTone is designed primarily to generate the pulses transmitted by
the transmitter of an active sonar system. A ModulatedTone object, or several
ModulatedTone objects combined using a SumSignal, may be used to generate
almost any of the pulses commonly used by active sonar systems.

30 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

The signal generated by a ModulatedTone has the following form:

x(t) = A e(t) cos(φ(t)) (27)

φ(t) = φ0 +

∫ t

t0

m(τ) dτ

e(t) = envelope(t)

m(τ) = 2π frequencyModulation(τ)

A = 10level/20

φ0 = (π/180) startingPhase

where envelope, frequencyModulation, level , and startingPhase are user-specified at-
tributes of class ModulatedTone. In particular, envelope and frequencyModulation,
which specify the time-dependent amplitude and frequency of the generated tone, are
function objects (objects of any subclass of base class Function) that can represent
any arbitrary function of time. Often objects of class TableFunction are used here.
The window functions described in Sec. 4.7 are often useful for the envelope attribute.
If envelope is omitted, it is a constant function with value 1.0. If frequencyModulation
is omitted for complex envelope signals, it is a constant function whose value is the
signal’s center frequency (F in Eq. (4)).

The integration used to compute the phase φ(t) in Eq. (27) is done numerically
using two-point (third order) Gaussian integration from each output sample to the
next. This is exact for polynomial frequency modulation functions up to cubic. The
phase is always continuous throughout the pulse sequence.

The SST Web contains examples showing how to use ModulatedTone to specify
shaded pure-tone pulses, FM sweeps, and sequences of shaded or unshaded tones or
sweeps. When used with SumSignal, ModulatedTone can also generate chords and
other non-sinusoidal signals.

4.7 Window Functions

Table 4 shows the window functions that SST provides for use with Spectrum-
FromSignal, SignalFromSpectrum, or ModulatedTone. Those marked “Squared,
Eq. (25)” in the “Sum Rule” column are appropriate for generating noise or reverber-
ation. Those listing “Linear, Eq. (11)” can be used as either the pre-window w(t) or
the post-window w′(t) for transforming signals between time-domain and windowed
frequency-domain representations (Eqs. (7) and (9)), provided the other window is a
RectangularWindow. Window functions used for power spectrum analysis (Eq. (12))
or as the envelope of a shaded ModulatedTone need not satisfy any particular sum

TR 0404 31

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

rule; for those applications, TaylorWindow or HannWindow is often preferred to
achieve a narrow spectral peak and low sidelobes. Because window functions are
derived from base class Function, you can use TableFunction to enter any window
you want. For a general discussion of window functions, refer to Oppenheim and
Schafer [Oppenheim Schafer 1989].

Table 4: Window Function Classes
Class Sum Rule Summary (see Eq. 28)
Function Base class: real function of

one real argument
TableFunction Function specified as table of

value vs. argument
CosineWindow Squared, Eq. (25) cos(πx/2)
HannWindow Linear, Eq. (11) cos2(πx/2)
LinearWindow Linear, Eq. (11) 1− x
MitchellMcPhersonWindow Squared, Eq. (25) Mitchell-McPherson [Mitchell

McPherson 1981]
RectangularWindow 1.0 in window, else 0
TaylorWindow Taylor (low sidelobes) [Taylor

1955]

In the equations in Table 4, the variable x is a normalized form of the independent
variable:

x = (|t− t̄| − (t1 − t̄))/L + 1 (28)

t̄ = (t1 + t0)/2

L = F (t1 − t0)

where t0 is the lower limit of the window (attribute start, default -1), t1 is the upper
limit (attribute end , default +1), and F is the fraction of the window length over
which it is tapered (attribute taperFraction, default and maximum 1/2). The equa-
tions in the table apply only to the tapered region, 0 ≤ x ≤ 1. Each of the window
functions has the value 0 if x ≥ 1 and 1.0 if x ≤ 0.

4.8 Grids

In many places, SST represents continuous functions in terms of samples at discrete
values of an independent variable. SST provides a uniform mechanism for specifying
these independent values: class Grid and its subclasses. They are used, for example,
to specify the times attribute in a Signal, the times and frequencies of a Spectrum, or

32 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

the times, frequencies, and dopplers of a ScatFun. They are also used to specify the
independent variables of TableFunction or TableFunction2 objects, which can be
used to specify window functions, the power spectrum in BroadbandNoise, and en-
vironmental parameters such as sound speed versus depth, volume absorption versus
frequency, or ocean depth versus location.

Class Grid is the base class for a family of classes designed to specify an ordered
set of values of an independent variable where some function is to be evaluated,
or sampled. UniformGrid is the simplest subclass of Grid, in which the interval
between adjacent values is constant (Eq. (1)). Other members of the family include
GeometricGrid (in which the ratio between adjacent values is constant), ListGrid
(for arbitrary values), and SubGrid (a subset of values from some other Grid).

5 The Eigenray Model

The model that describes how sound is transformed as it propagates from one part
of the ocean to another — the eigenray model — is central to SST’s operation.
This transformation requires two time-dependent sets of inputs: the sound to be
transformed, and the set of losses and delays to be applied to that sound. The
eigenray model supplies the second set in the form of a finite list of eigenrays, each
of which represents a distinct path by which sound can travel from one place in the
ocean to another. Each eigenray takes as its input the source and receiver locations in
the ocean, rS and rR. Given that pair, eigenray p produces the following information:

• Tp(rR, rS) is the propagation delay for path p; i.e., the time required for sound
to travel from one end of the path to the other.

• Lp(f, rR, rS) is the complex-valued propagation loss factor for path p including
spreading loss, boundary reflection loss, and volume absorption. Its unit is
inverse length (m−1). It gives the ratio of the sound pressure at rR to the
transmitted sound pressure at rS reduced to a distance of one meter, as a
function of acoustic frequency f .

• SSp(rR, rS) = ∇STp(rR, rS) is the slowness vector at the source, which is de-
fined as the spatial gradient of the time delay with respect to the source location
rS. Its direction is opposite the direction of propagation along the eigenray at
the source, and its magnitude is the inverse of the local sound speed at the
source.

TR 0404 33

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

• SRp(rR, rS) = ∇RTp(rR, rS) is the slowness vector at the receiver R; i.e., the
spatial gradient of the time delay with respect to the receiver location rR. It
points in the direction of propagation along the eigenray at the receiver, and
its magnitude is the inverse of the local sound speed at the receiver.

At one level, the eigenray model consists of a finite set of maps whose inputs are two
end-point locations, rR and rS, and whose outputs are the four pieces of information
listed above: Tp, Lp(f), SSp, and SRp.

At a slightly higher level, the presence of the gradients SSp and SRp suggests use
of a first-order Taylor expansion to compute the time delay, not just between the
given end points, but between two points in small neighborhoods around the given
end points:

Tp(rR + ρR, rS + ρS) = Tp(rR, rS) + SRp · ρR + SSp · ρS + · · · , (29)

where the offset vectors ρR and ρS are assumed to be small compared to the total
propagation distance. This is useful because sources and receivers have finite size.
Given an eigenray from one point on the source to one point on the receiver, this
expansion can be used to compute (approximately) the delay from any part of the
source to any part of the receiver.

For most purposes the “local plane wave” approximation (first-order Taylor ex-
pansion) of Eq. (29) is sufficient. However, for a long array and a source at short
range, wave-front curvature may be significant. More to the point, large-aperture
passive sonars like towed arrays use wave-front curvature as an important clue for
estimating target range. The eigenray model does not give enough information for a
full second-order expansion of the time delay, but SST gets part way there using a
spherical wave approximation. In this approximation, the wave front at each end is
locally spherical, with a center located at the apparent location of the other end as
inferred from the time delay and the local sound speed. Each of the dot products in
Eq. (29) is replaced by a second-order expression of the form

τp(S, ρ) = S · ρ +
|S|2|ρ|2 − (S · ρ)2

2Tp

. (30)

This approximation is good for straight-line propagation, and remains useful for hor-
izontal curvature in most scenarios. It is less trustworthy for vertical curvature in the
presence of ray bending.

Another important property is that the delay Tp does not depend on frequency
because the ocean is nondispersive; i.e., the dependence of the sound speed on fre-
quency is very weak [Urick 1983]. Small violations of the nondispersive assumption
can be absorbed into the phase of the complex loss Lp(f, rR, rS).

34 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

It is equally important to note that the eigenray model does not give gradients
of the propagation loss Lp(f, rR, rS). This is a value judgment, not a fundamental
limitation. The eigenray model computes the gradients of time delay because beam
formers are very sensitive to variation in propagation time between one part of a
source or sonar and another part. However, variation in propagation loss in a region
the size of a source or sonar is not so important, so it is ignored. The loss Lp(f, rR +
ρR, rS + ρS) is assumed to be independent of ρR and ρS over such regions. Large
sonar arrays or targets for which these assumptions do not hold can still be modeled,
but to do so SST must treat them as compact groups of elements or highlights, and
explicitly compute the eigenrays to the center of each group.

Thus, at the second level, the inputs to the eigenray model are not two points,
but two regions around those points. For each eigenray, the eigenray model gives the
loss and delay from any point in one region to any point in the other region.

There is a third level, too: the eigenray model specifies a linear transformation
whose input is a sound source field qS(t, r) emitted from various parts of a source
in the neighborhood of rS, and whose output is the resulting sound field p(t, r) in
the neighborhood of rR. SST assumes that this transformation has the following
mathematical form (in the time domain):

pR(t, rR + ρR) =
∑

p

∫ ∫
lp(τ, rR, rS) (31)

×qS (t− Tp(rR + ρR, rS + ρS)− τ, rS + ρS) dτ dρS.

The offset vectors ρR and ρS have the same scale as the size of the receiver and
source, respectively, and are assumed to be small compared to the total propagation
distance. The sum is over eigenrays (paths) p.

The propagation impulse response lp(τ, rR, rS) in Eq. (31) is the inverse Fourier
transform of the propagation loss:

lp(τ, rR, rS) =

∫ ∞

−∞
Lp(f, rR, rS) e2πifτ df. (32)

Because Lp(f, rR, rS) varies slowly with frequency, lp(τ, rR, rS) is sharply peaked in
time delay τ . Eq. (31) will be combined with the source and receiver models in Sec. 8.

5.1 Straight-line Eigenray Model

Of SST’s three choices for the eigenray model, the only one that is contained entirely
within the SST software is the base class, EigenrayModel. This model is valid only

TR 0404 35

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

if the sound speed is independent of depth and location, the ocean depth is constant,
and the surface and bottom properties are the same everywhere. Sound travels in
straight lines except where it reflects in the specular (mirror) direction from the
surface or bottom.

SST computes the eigenrays using the method of images. Effectively, the sound
travels in a straight line from the source to an image of the receiver, which is placed at
the apparent location of the receiver as seen from the source, possibly via surface and
bottom reflections. Each image is above or below the actual position of the receiver,
by a distance that depends on the ocean depth and the number and order of the
reflections. The vector from the source to the image of the receiver for path p is given
by

Rp = rR − rS − 2|Sp −Bp|zRẑ ± 2BpDẑ (33)

where Bp is the number of bottom reflections for path p, Sp is the number of surface
reflections, D is the ocean depth, rR is the receiver location, rS is the source location,
ẑ is a unit vector in the z direction (down), and zR = rR · ẑ is the receiver depth. The
sign of the last term is + if the reflection closest to the source is from the bottom, or
− if it is from the surface. There are four images (i.e., four paths p) for each nonzero
value of Bp: Sp = Bp − 1, Sp = Bp + 1, and two with Sp = Bp.

The time delay for path p is

Tp = Rp/c (34)

where Rp = |Rp| is the slant range from the source to the image of the receiver and
c is the sound speed.

The propagation loss includes spherical spreading, volume absorption, and reflec-
tion losses:

Lp(f) = R−1
p eα(f)Rp [LS(s, f)]Sp [LB(s, f)]Bp (35)

where LS(s, f) is the reflection loss for each surface bounce, LB(s, f) is the reflection
loss for each bottom bounce, s is the sine of the grazing angle, f is the frequency,
and α(f) ≤ 0 is the volume absorption rate per meter (from the volume attenuation
model, Sec. 6.3).

The slowness vectors are given by:

SRp = Rp/(cRp) (36)

SSp = −Rp/(cRp)

except that the sign of the vertical (Z) component of SRp is reversed if the total
number of bounces, Sp + Bp, is odd.

36 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

5.2 CASS/GRAB Eigenrays

The Comprehensive Acoustic System Simulation (CASS) [Weinberg et al. 2001] soft-
ware, developed by Henry Weinberg and others at NUWC Newport, models oceans in
which the sound speed may vary with all three dimensions, and the bathymetry and
bottom type may depend on horizontal location. The eigenrays can bend, and the
direction of the forward bottom reflection depends on the local bottom slope. CASS
is a self-contained modeling environment that can compute and plot many different
results of interest for sonar analysis and performance prediction. The only component
of CASS used by SST is the Gaussian Ray Bundle (GRAB) [Weinberg Keenan 1996]
eigenray model.

CASS produces eigenrays in external files, which SST reads and uses in its simula-
tions. Two different SST classes may be used, depending on the relationship between
the CASS run and the SST run. The recommended choice is to run only SST, and
specify class CASSEigenrayRun for the eigenray model. In that case, SST generates
the CASS input files based on its own input parameters, and runs CASS as a sub-
process. This is the recommended choice in most cases because SST ensures that the
CASS and SST run streams are consistent. It is also less work than CASSEigenray-
Model because you need to prepare only SST’s input files, not CASS’s.

SST users may choose to prepare CASS input files, run CASS to generate eigen-
rays, and then run SST independently. In that case, choose class CASSEigenray-
Model and specify the names of the eigenray files that CASS wrote. This is strongly
discouraged because it is very difficult to maintain consistency between CASS and
SST. CASSEigenrayModel remains in SST primarily to facilitate testing.

5.3 Generic Sonar Model (GSM) Eigenrays

The Generic Sonar Model (GSM) [Weinberg 1985], a much older product of Henry
Weinberg at NUWC, models oceans in which the sound speed may depend only on
depth. The sound speed, ocean depth, and boundary properties are assumed to be
independent of horizontal location (range independent). GSM includes five different
user-selectable eigenray models, of which the most useful with SST (in our opinion)
are the Multipath Expansion (MULTIP) and Fast Multipath Expansion (FAME)
models.

Use of GSM is somewhat simpler than use of CASS, but otherwise very similar.
Like CASS, GSM can be run separately before SST, using the SST class GSMEigen-
rayModel. Your other choice is to run only SST, specifying class GSMEigenrayRun

TR 0404 37

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

for the eigenray model; SST then runs GSM as a subprocess. The same issues of
consistency arise with GSM as with CASS, but because GSM is simpler, the prob-
ability of getting it right with GSMEigenrayModel is somewhat better than with
CASSEigenrayModel. Nevertheless, GSMEigenrayRun is the recommended option.

NUWC no longer supports GSM. We continue to support its use in SST, at least
until our users have time to convert their SST scripts to CASS.

5.4 Eigenray Interpolation and Ray Identity

For many reasons, it is important that the delay, loss, and slowness vectors for a
given eigenray are continuous functions of the end points rR and rS. Continuity
of the delay Tp is especially important, in part because the first derivative of the
delay is the Doppler shift, to which many sonar receivers are especially sensitive.
Achieving continuity for the straight-line eigenray model is easy because its properties
are computed as needed, and because the identity of each eigenray is uniquely specified
by the number and order of its surface and bottom reflections.

For both CASS and GSM eigenrays, the eigenray files read by SST contain eigen-
rays (sets of eigenray properties) at discrete values of the end point locations. Values
between those locations must be computed using interpolation. Given a list of eigen-
rays at one location and another such list at a neighboring location, we are faced with
the problem of matching the members of one list with the members of the other list
in such a way that it makes physical sense to interpolate eigenray properties between
the matching eigenrays at different locations. Matching eigenrays are assigned to a
single ray (an object of some subclass of base class Ray). The expectation is that for
a given ray object identified by index p, the maps from the location pair (rR, rS) to
the properties Tp, Lp(f), SSp, and SRp are continuous and physically meaningful.

CASS and GSM help with this matching by providing a signature for each eigenray,
consisting of the numbers of surface bounces, bottom bounces, upper vertexes, and
lower vertexes for each one. Unfortunately, the signature is not sufficient to specify
uniquely how to match eigenrays at different locations because there can be any
number of eigenrays (including zero) with the same signature for the same location
pair, and that number can change from location to location.

At the start of a simulation, SST reads the CASS or GSM eigenray files into its
memory and organizes them into a set of internal tables designed to support interpo-
lation in the tables. To do this, each set of eigenray properties read from the files is
assigned a ray identity, and eigenrays with the same identity are eventually mapped
into the same ray object. Eigenrays with the same signature are assigned their ray

38 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

identities using a complex set of heuristics that take into account the closeness of the
attributes (especially delay) of one eigenray to a simple extrapolation of the attributes
of an adjacent eigenray. These heuristics work well in our tests, but our tasks would
be much easier and our confidence would be higher if the eigenray models provided a
unique signature to support unambiguous matching for interpolation.

6 Ocean Model

The primary inputs to the eigenray model (besides the locations of the end points)
come from properties of the ocean, which is an object of class Ocean. The properties
used as inputs to the eigenray model are the depth, sound speed, volume attenua-
tion, and the reflection coefficients of the surface and bottom. These properties are
used directly by the straight-line EigenrayModel, and they are passed in table form
to CASS or GSM by class CASSEigenrayRun or GSMEigenrayRun, respectively.
Classes CASSEigenrayModel or GSMEigenrayModel do not use them, since they
get their inputs from the user-supplied CASS input file.

In addition, class Ocean supplies the scattering strengths used by SST’s rever-
beration model, which will be described in Sec. 10.

6.1 Ocean Depth

The depth attribute of class Ocean is, in general, a function of horizontal location
D(x, y), in meters, with x and y in meters north and east of an arbitrary origin. Its
type is class Function2, which is an abstract base class for describing any real-valued
function of two real variables. That means the user can assign to depth an object of
any subclass of Function2. By default, it is an object of class ConstantFunction2;
the user simply assigns a value, e.g., “ocean.depth = 200”.

If CASS eigenrays are used, the bathymetry can be specified by assigning to the
depth attribute an object of class TableFunction2, which provides several ways to
enter a table of depth on a rectangular grid versus horizontal location (meters north
and east of an arbitrary origin). Interpolation in the table is normally bilinear (order
1), although the user can specify the order up to cubic (order 3).

Alternatively, assign to Ocean’s depthFile attribute the name of a file in CASS’s
input format containing a “BOTTOM DEPTH TABLE” section. SST will search for that
section, parse it, extract the bathymetry, and build a TableFunction2 object from
the data.

TR 0404 39

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

6.2 Ocean Sound Speed

The soundspeed attribute of class Ocean is, in general, a function of depth c(z) in
meters per second, versus depth z in meters. Its type is class Function, which is an
abstract base class for describing any real-valued function of one real variables. By
default, it is an object of class ConstantFunction; the user simply assigns a value,
e.g., “ocean.soundspeed = 1500”. The default value is 1520 m/s.

If CASS or GSM eigenrays are to be used, the sound speed profile can be specified
by assigning to the soundspeed attribute an object of class TableFunction, which
provides several different ways to enter a table of sound speed versus depth. This
table is passed to CASS or GSM, which does its own interpolation.

CASS permits the sound speed to depend on horizontal location as well as depth.
However, SST does not yet provide a way to specify this horizontal variability.

6.3 Ocean Volume Attenuation

The volumeAttenuation attribute of class Ocean is, in general, a function of frequency
A(f) in dB per km, versus frequency f in Hz. By default, it is an object of class
ConstantFunction; the user simply assigns a value, e.g., “ocean.volumeAttenuation
= -2.1”. The default value is 0 dB/km.

To specify frequency-dependent attenuation, one option is to assign to the vol-
umeAttenuation attribute an object of class TableFunction, which allows the user to
enter a table of attenuation versus frequency using tables of the same formats used
for the sound speed. Another option is to assign ThorpAttenuation to the attribute.
This option computes the absorption using the expression in [Urick 1983] page 108.

6.4 Surface and Bottom Models

Class Ocean contains attributes surface and bottom, both of which are objects of
class Boundary. SST users can assign to them any object of any class derived from
Boundary, including APLBottom, JacksonBottom, APLSurface, GilbertSurface,
and McDanielSurface.

40 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

6.4.1 Reflection Coefficients

Each of these classes defines two complex-valued member functions TotalForwardAmp
and CoherentForwardAmp, each of which is a function of two arguments, sinAngle
(the sine of the grazing angle) and frequency (in Hz).

The straight-line EigenrayModel class uses these functions to compute the factors
LS(s, f) and LB(s, f) in the eigenray propagation loss, Eq. (35); classes CASSEigen-
rayRun and GSMEigenrayRun use them similarly. For each boundary, SST calls the
member function CoherentForwardAmp when the eigenrays are being used for one-
way propagation or target echoes, but it calls TotalForwardAmp when the eigenrays
are being used for reverberation. The theory behind this practice is based on the
following distinction:

• For reverberation, the distinction between near-specular forward scattering and
specular reflection is unimportant; all that matters is how much energy is
removed from the total. Hence, SST calls TotalForwardAmp, which treats
forward-scattered energy as if it were specularly reflected.

• For passive reception or target echoes, scattered energy is effectively lost be-
cause scattering reduces the coherence of the signal (reducing processing gain),
stretches it out in time, and spreads it in angle, all of which tend to push it
down under the background. Hence, SST calls CoherentForwardAmp, which
treats forward-scattered energy as if it were absorbed.

This theory is flawed; for many purposes TotalForwardAmp is too large and Coher-
entForwardAmp is too small. We are currently addressing this issue by developing
new algorithms to control the coherence of the simulated signal; the “coherent ver-
sus incoherent” dichotomy will be replaced by explicit and quantitative control of
coherence.

For most purposes the distinction is unimportant anyway because CoherentFor-
wardAmp is used only by the straight-line EigenrayModel. If CASSEigenrayRun
or GSMEigenrayRun is selected, the TotalForwardAmp function is called repeatedly
with different values of frequency and grazing angle to build a “SURFACE REFLECTION

COEFFICIENT TABLE” and a “BOTTOM REFLECTION COEFFICIENT TABLE” to be passed
to CASS or GSM. This tends to overestimate the reflection coefficient, except for re-
verberation. The table is passed in decibels; CASS and GSM ignore the phase.

(Note: CASS accepts a table of phase shifts too, but CASSEigenrayRun doesn’t
provide it. This needs to be fixed soon.)

TR 0404 41

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

6.4.2 Bistatic Scattering Strength

Each Boundary subclass also provides a function called BistaticStrength, denoted
Sl(f, Sp, Sq). It computes the scattering differential cross section per unit area of the
boundary; it is dimensionless (an area divided by an area). It takes as its input a
frequency f and two slowness vectors, Sq giving the direction from which incident
sound arrives at the boundary, and Sp giving the direction toward which it scatters.
The subscript l denotes a scattering layer (surface or bottom) and the subscripts p
and q denote the outgoing and incoming eigenrays.

Most of the Boundary subclasses are fully bistatic. That means the two slowness
vectors reduce to at least three independent parameters: two grazing angles (from
the boundary plane to each of the two slowness vectors) and a bistatic angle (from a
vertical plane containing one vector to the other vector). Under most conditions, the
bistatic strength is strongly peaked in the region of the specular direction.

The older Boundary subclasses, APLBottom and APLSurface, are monostatic.
That means they define a backscattering strength Sl(f, sin(θ)), which is a function of
only one angle, the grazing angle θ. For those classes, the BistaticStrength method
computes the backscattering strength for each of the two grazing angles (incoming and
outgoing) and returns the geometric average (the square root of the product). This is
the same form used by CASS. It is a reasonably good approximation for geometries
that are close to backscattering (i.e., if the two slowness vectors are nearly equal)
and for bubble-dominated surface scattering. It is a particularly bad approximation
for the region near the specular direction because it does not produce a peak in that
region. The monostatic models may be removed in a future SST release.

6.4.3 Boundary Classes

The Boundary classes are listed in Table 5 with the literature references from which
they were taken and a brief indication of applicability. In the table “high frequency”
means over 10 kHz and “mid frequency” means 1 to 10 kHz (roughly).

The base class Boundary allows the user to enter either or both of the reflection
coefficient functions and the monostatic backscattering strength as tables versus an-
gle and frequency. By default the reflection coefficients are unity (no loss) and the
backscattering strength is zero in energy terms (no scattering). Boundary may be
used for either the surface or the bottom.

For the surface models APLSurface, GilbertSurface, and McDanielSurface, To-
talForwardAmp includes all of the incident intensity except the fraction that is ab-

42 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Table 5: Surface and Bottom Models
Class References Use
Boundary Monostatic, table driven
APLBottom [APL Models 1994, Mourad

Jackson 1989]
Bottom, monostatic, high
frequency

JacksonBottom [Williams Jackson 1998, APL
Models 1994, Mourad Jackson
1993, Mourad Dahl Jackson
1991,Moe Jackson 1994, Schul-
ten Anderson Gordon 1979]

Bottom, bistatic, mid to
high frequency

APLSurface [APL Models 1994] Surface, monostatic, high
frequency

GilbertSurface [Gilbert 1993,Kulbago 1994] Surface, bistatic, low to mid
frequency

McDanielSurface [McDaniel 1990, Lang Culver
1992, Donelan Hamilton Hui
1985]

Surface, bistatic, high fre-
quency

sorbed by bubbles and converted to heat. CoherentForwardAmp also removes scat-
tered intensity using a simple model of surface roughness [APL Models 1994]; this
loss can be very substantial whenever the wave height is comparable to or greater
than the acoustic wavelength. The only environmental input to these models is the
wind speed.

For the bottom models APLBottom and JacksonBottom, the TotalForwardAmp
and CoherentForwardAmp are identical. The reflected intensity includes all of the
incident intensity except the fraction that is refracted into the bottom, as estimated
using a lossy Rayleigh coefficient [Mackenzie 1959]. Bottoms of these classes may
be specified using sets of parameters describing surface roughness, sediment sound
speed, absorption rate, and scattering within the sediment. Sets of named bottom
types (e.g., MediumSand or CoarseSilt) are also provided.

6.5 Volume Scattering Strength

Volume scattering tends to occur in layers because sea life tends to congregate at re-
stricted ranges of depth. Therefore, volume scattering is specified in SST by defining
a list of ReverbLayer objects, each of which specifies the volume scattering strength
(assumed constant) between specified upper and lower depth limits. Currents are
specified by giving the average horizontal velocity of the scatterers in each layer.

TR 0404 43

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Currently, SST’s reverberation model (Sec. 10) treats each layer as if all of the scat-
terers were concentrated in a thin sheet in the center of the layer.

7 Sonar and Source Models

The sonar model (the box labeled “Sonar Receiver” in Fig. 1) describes any compact
object that can receive sound from the ocean. The source model (the boxes labeled
“Sonar Transmitter” and “Source”) describes any compact object that emits sound
into the ocean. These are represented in SST by objects of classes Sonar and Source,
respectively. For passive sonar scenarios the Source is whatever the sonar is listening
to. For active sonar scenarios the Source is the transmitter. Other Source objects
may represent countermeasures, the sonar’s own vehicle, interfering ships in the area,
pile drivers, explosions, or anything else that produces sound from a small region.
Sonar and Source objects are also used internally to model target echoes (Sec. 9).

Classes Sonar and Source are almost identical. Each object of either of those
classes contains the following attributes:

• trajectory : an object of a class derived from base class Traject. It determines
the location and orientation of the sonar or source platform as a function of
time.

• beams: a list of objects derived from base class Beam. They determine the
spatial properties of each channel, including its directional sensitivity and the
location of its phase center.

• signal : an object of a class derived from base class Signal. For a Source, this
is an input representing transmitted sound. For a Sonar, it is an output repre-
senting received sound. (The association of a Signal with a Sonar is implicit;
it is not formally an attribute of class Sonar.)

An active sonar system consists of a Sonar and at least one Source. It is mono-
static if those components share a single trajectory, and it is bistatic if they have
different trajectories.

44 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

7.1 Trajectories and Coordinate Transformations

In Sonar, Source, and Target objects, the local geometric properties (the locations
and beam patterns of the transducers, sources, or highlights) are expressed in a
platform-centered coordinate system whose components are in the directions (For-
ward, Starboard, Below) relative to some arbitrarily defined “center” of a particular
platform (its origin). Global properties of the ocean are expressed in the Earth-
centered coordinate system, whose components are in the directions (North, East,
Down) relative to an origin at an arbitrary point on the surface of the ocean. The
time-dependent mapping between the local and global coordinate systems is defined
by the trajectory attribute of each vehicle. An SST user specifies the trajectory by
assigning to this attribute an object of any subclass of class Traject — usually a
Trajectory, but sometimes a CombinedTraject.

Two kinds of vectors need to be transformed between local and coordinate systems:
locations and directions (slowness vectors). These transformations take the following
linear form:

r′ = MX(t) (r − rX(t)) (37)

S′ = MX(t) S ,

where the primed vectors are expressed in platform coordinates and the unprimed
vectors are in Earth-centered coordinates. The vector rX(t) is the location of the
origin of platform X, and MX(t) is the 3-by-3 rotation matrix determined by the
orientation of the platform (sonar, source, or target). Each vehicle’s trajectory sup-
plies the time-dependent location rX(t) and rotation matrix MX(t) used in these
coordinate transformations.

A Trajectory (the most commonly used subclass of Traject) specifies a body’s
motion using a list of Snapshot objects. Each Snapshot is a “picture” of the position,
velocity, orientation, and rotation rate of a body (four attributes, three numbers each)
at a single specified time. For intermediate times the trajectory is computed using
self-consistent cubic interpolation, in which all four attributes are continuous in time.
For times outside the range of the list, each Trajectory is extrapolated using the
assumption that the velocity and the rotation rate remain constant in the body’s
own coordinate system. Thus, a Trajectory containing a single Snapshot can be
used to specify motion in a straight line, a circle, or a helix.

The other Traject subclass is CombinedTraject, which is specified in terms of
two other Traject objects: one to specify the motion of a body with respect to an
intermediate coordinate system, and another to specify the motion of that intermedi-
ate coordinate system with respect to a global system. A CombinedTraject can be

TR 0404 45

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

used anywhere that a Traject is required, but its primary application is internal, in
the implementation of SST’s target models.

Internally, orientations and rotations are represented using quaternions [Dean
1966], also known as Cayley-Klein parameters [Goldstein 1950]. This representation
is chosen for its combination of compactness with efficient support of coordinate
transformations, composition of rotations, interpolation, and extrapolation.

7.2 Beam Patterns

Each Sonar and each Source contains an attribute called beams, which consists of a
user-specified list of objects belonging to classes derived from the base class Beam,
one object per channel in the associated signal . Each Beam object provides member
functions that compute the following quantities:

• Bc(f, S′): the directional sensitivity pattern used in Eq. (39) (or the corre-
sponding one for source beams), given the frequency f and the slowness vector
S′ in platform coordinates. For element-level simulations, this is the sensitiv-
ity pattern of one element, as modified by the physical supports and baffles
surrounding it and by any preamplifiers or filters between the element and the
injection point chosen for the simulation. For beam-level simulations, this is the
effective sensitivity pattern of the array plus surrounding hardware, as modified
by any signal processing steps from the array through the beamformer.

• r′c: the channel offset. This is the location, in platform coordinates, of the
phase center of channel c. For element-level simulations, this is the location
of a transducer relative to the array center. For beam-level simulations, it is
often zero, or sometimes the center of a sub-array used to form an “offset phase
center” beam.

• τp(S
′, r′c): the offset delay used in Eq. (31). The expression used is essentially

Eq. (30), using the channel offset r′c in place of ρR and with inputs in platform
coordinates.

Subscript c stands for the receiver channel r or the source channel s.

The various subclasses of class Beam differ from one another in the algorithm
used to compute Bc(f, S′). They are listed in Table 6.

The first section in the table contains simple, self-contained beam patterns, most
of which are based on equations in Chapter 3 of [Urick 1983]. For example, Stick-
Beam, PistonBeam, and LineBeam come from the first three rows of Urick’s Table

46 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Table 6: Beam Pattern Models
Class Summary
Beam Abstract base class
OmniBeam Omnidirectional (1.0 everywhere)
BinomialBeam Binomial weighted, steered line array
ConeBeam 1.0 inside a cone, 0 outside
DCLineBeam Dolph-Chebyshev weighted line array [Albers 1965]
ElementSumBeam Sum of weighted elements beam pattern
LineBeam Uniformly weighted, steered line array
PistonBeam Circular piston transducer
RecPistonBeam Rectangular piston transducer
StickBeam Continuous, uniform line transducer
EBFTableBeam Interpolated from table vs. elevation, bearing, frequency
EFIntensityBeam Intensity vs. sin(elevation) and frequency
SIOBeam Table vs. elev, bear, freq in binary SIO file
DecibelBeam Beam pattern transformed from decibels to pressure ratio
ProductBeam Product of input beam patterns
RotatedBeam Beam pattern rotated with respect to the platform coor-

dinates
SumBeam Sum of element beam patterns
WeightedBeam Beam pattern multiplied by a weight and phase-shifted for

delay

3.2 (second column, omitting the squaring operation). Each beam pattern object is
constructed using input parameters that differ from class to class. For example, Pis-
tonBeam requires a piston diameter and axis direction, whereas LineBeam requires
the number and spacing of the elements, axis direction, and steering delay.

The classes in the second section in the table accept tables of numbers; Bc(f, S′)
is computed by interpolation. EFIntensityBeam and SIOBeam optionally accept
another beam pattern as input, in which case the table is computed by sampling the
input pattern; the result may be used in this or subsequent runs to speed up the
simulation.

The classes in the third section of the table are transformations that accept one
or more input beam patterns and transform them in some way.

All beam patterns accept, in addition to their class-specific input parameters, an
offset vector r′c and an additional delay to be added to the offset delay τp(S

′, r′c).

TR 0404 47

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

7.3 Sonar Transformation

The sonar model has a more abstract interpretation: it represents a transformation
whose output is the signal yr(t) in all channels r of receiver R, and whose input is
the sound field in the water, pR(t, r), for r in the neighborhood of the sonar origin
rR. Such a sound field is produced as the output of the eigenray transformation
(Eq. (31)). The sonar transformation takes the following form (in the time domain
and platform coordinates):

yr(t) =

∫ ∫
br(τ,ρ

′
r) p′R(t− τ, r′r + ρ′

r) dτ dρ′
r , (38)

where r′r is the channel offset vector provided by the beam pattern model for receiver
channel r (Sec. 7.2). The time-space domain kernel br(τ,ρ

′
r) for receiver channel r is

related to the receiver’s beam pattern Br(f, S′) by a four-dimensional spatiotemporal
Fourier transform:

br(τ,ρ
′
r) =

∫ ∫
Br(f, ν ′/f) e2πi(fτ+ν′·ρ′

r) df dν ′ , (39)

where ν ′ is the wave number vector in vehicle coordinates. The spatial kernel br(τ,ρ
′
r)

is nonzero over the region ρ′
r where the receiver is sensitive. For an ideal piston beam

the sensitive region is the disk at the face of the transducer, although in practice
effects like baffling and shadowing tend to make it more complicated. SST starts
from the frequency-direction form, Br(f, S′), where S′ = ν ′/f (beam patterns versus
frequency and look direction).

The primed coordinates in Eqs. (38) and (39) are expressed in a platform-centered
coordinate system whose origin is at rR(t). Equation (37) defines their relationship
to the unprimed, Earth-centered coordinates used in the eigenray transformation
(Eq. (31)).

7.4 Source Transformation

The source model has a similarly abstract interpretation: it represents a transforma-
tion whose input is the signal xs(t) emitted through each channel s of the source S,
and whose output is the sound source field qS(t, rS + ρS) in the neighborhood of rS.
This sound source field is the input of the eigenray transformation (Eq. (31)). The
source transformation takes the following form (in the time domain):

qS(t, rS + ρS) =
∑

s

∫
b′s(τ,MS(t) ρS − r′s) xs(t− τ) dτ , (40)

48 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

where r′s is the channel offset vector provided by the beam pattern model for source
channel s (Sec. 7.2). The time-space domain kernel b′s(τ,ρ

′
s) for source channel s is

related to the source’s beam pattern Bs(f, S′) as per the receiver (Eq. (39)) except
for the sign in the relationship S′ = −ν ′/f . The relations between platform-centered
(primed) and Earth-centered (unprimed) coordinates are given by Eq. (37).

8 Direct Sound Propagation Models

The “direct” sound propagation model is a transformation whose input is the sound
xs(t) emitted by all channels s of a given source, and whose output is that portion
of the received sound yr(t) that does not scatter from objects or irregularities on its
way to receiver channel r. Conceptually, it consists of the successive application of
the source model, the eigenray model, and the receiver model, whose time-domain
expressions are given by Eqs. (40), (31), and (38), respectively. If we combine those
equations in series, the spatial integrations reduce to Dirac delta functions and drop
out. The remaining operations can be arranged into successive signal transformations,
as follows:

xsp(t) = xs (t− Tp − τp(MSSSp, r
′
s)) (41)

xp(t) =
∑

s

∫ [∫
e2πifSτ ′

S Bs(fS, MSSSp)dfS

]
xsp(t− τ ′S) dτ ′S (42)

yp(t) =

∫ [∫
e2πifτ Lp(f)df

]
xp(t− τ) dτ (43)

xrp(t) =

∫ [∫
e2πifRτ ′

R Br(fR, MRSRp)dfR

]
yp(t− τ ′R) dτ ′R (44)

yrp(t) = xrp (t− τp(MRSRp, r
′
r)) (45)

yr(t) =
∑

p

yrp(t). (46)

Thus, the transformation of a source channel signal xs(t) to a receiver channel signal
yr(t) involves three filters [source beam pattern Bs(f, S′

Sp), eigenray loss Lp(f), and
receiver beam pattern Br(f, S′

Rp)] plus three delays [source channel offset τp(S
′
Sp, r

′
s),

eigenray Tp, and receiver channel offset τp(S
′
Rp, r

′
r)], plus sums over eigenrays and

source channels. The offset delays are given by Eq. (30). The three inverse Fourier
transforms (in square brackets) compute the time-domain impulse responses for the
filters, and the three time integrations convolve those impulse responses with the
signal.

TR 0404 49

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Note that all of the filters and delays depend parametrically on time t because the
trajectory attributes rR, rS, MR, and MS depend on time (the sonar and source can
move), and the eigenray attributes SSp, Tp, Lp(f), and SRp depend on the eigenray’s
end points rR and rS.

8.1 DirectSignal

Equations (41) through (45) represent “ideal” filters and delays. Their implementa-
tion by SST class DirectSignal looks very much like those equations, except that the
convolutions and interpolations are forced to have finite length. For each path p, Di-
rectSignal sets up a chain of five “data flow” objects (Sec. 4.3) in series: two VarDelay
objects (Sec. 4.5.1) implementing Eqs. (41) and (45), sandwiching three VarFirFilter
objects (Sec. 4.5.2) implementing Eqs. (42), (43), and (44). The chains p feed into
a SumSignal object implementing Eq. (46). The VarDelay and VarFirFilter objects
are fed by lower-volume internal data flow objects carrying the time-varying delays
and filter responses from the eigenray model and the source and receiver models.

This entire network of interconnecting objects is set up by the openRead operation
at the start of the CopySignal operation. In the CopySignal main loop,each readBlock
operation activates all of the objects in that network as required to compute that
block. At the end of the CopySignal operation, the close operation of DirectSignal
shuts down and destroys the network of data flow objects.

8.2 DirectSpectrum

As the signal bandwidth increases, the lengths of the required FIR filters may increase
to the point where it becomes advantageous to do all three filters (Eqs. (42) through
(44)) in the frequency domain. To do this, SST offers class DirectSpectrum as an
alternative to DirectSignal. DirectSpectrum produces its results in the windowed
frequency domain form as defined by Eq. (7), as follows:

Yr(f, t) =
∑

p

Br(f, MRSRp) Lp(f)
∑

s

Bs(f, MSSSp) (47)

×Xs(f, t− Tp − τp(MSSSp, r
′
s)) .

For each eigenray p the initial delay, which includes the source channel offset delays
τp(MSSSp, r

′
s) and the eigenray delay Tp, is done in the time domain using class

VarDelay, just as it is in DirectSignal. Following that delay DirectSpectrum trans-
forms the signal into the windowed frequency domain form (class SpectrumFrom-
Signal, Eq. (7)). The three successive filters (source beams, eigenray, and receiver

50 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

beams) are done in the frequency domain, and the result remains in the frequency
domain. For cases where the filters are long, this saves the time needed to transform
back and forth between time and frequency domains between filters. Unfortunately,
SST does not (yet) have a frequency-domain delay operation, so DirectSpectrum
cannot be used if the receiver channels have offsets. DirectSpectrum was used heav-
ily in a passive-sonar application several years ago, and (to my knowledge) has not
been used since.

9 Target Echo Model

SST class TargetEcho is a data-flow class (Sec. 4.3) whose attributes include a
Source, a Sonar, and a Target. The output represents sound that has been transmit-
ted by the Source; received, altered, and re-transmitted by the Target; and finally
received by the Sonar.

From TargetEcho’s point of view, a target consists of a group of receivers (Sonar
objects) and a group of transmitters (Source objects) back to back, with a target-
specific transformation that determines what happens to the received sound before it
is re-transmitted.

Class TargetEcho is implemented using one or more DirectSignal objects to carry
sound from the source to the target, and one or more DirectSignal objects to carry
sound from the target to the receiver. The transformation from the sound received by
the Target to the sound re-transmitted by the Target is determined by the Target
subclass. The TargetEcho object sets up the network of DirectSignal objects at the
start of a CopySignal operation, and tears it down at the end of that operation.

This algorithm is inherently bistatic — nowhere is it assumed that the source and
the receiver are at the same location. The common monostatic case is modeled by
assigning the same trajectory to both the source and the receiver. The code that
SST executes is exactly the same for either monostatic or bistatic systems. In fact,
the source need not be a conventional active transmitter, and the signal need not
be a pulse. This flexibility enables SST to model tactically interesting effects such
as scattering of sound emitted by a broadband jammer countermeasure from the
submarine that launched it, as heard by another submarine. That situation is not
what is conventionally thought of as a “target echo”, but SST’s TargetEcho class
will handle it.

TR 0404 51

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

9.1 Target Models

All of SST’s target models are derived from the base class Target. Every Target
contains a trajectory (Sec. 7.1). Each subclass of Target adds other attributes, which
determine the relationship between the sound received by the target and the sound
it re-transmits. All of the existing subclasses of Target express that relationship in
terms of highlights, which are point scatterers that move as a group along the target’s
trajectory. However, the Target interface used by TargetEcho (summarized above)
is general enough to support not only highlight-based target models but also artificial
targets and active countermeasures.

The three existing target models differ in how the placement and properties of
their highlights are determined.

9.1.1 PointTarget

Class PointTarget is SST’s simplest target model. The user specifies a list of point
scatterers, each of which is characterized by its scattering strength and its position
and velocity relative to the target’s local coordinate system. The signal transmitted
from each highlight’s location is simply a scaled copy of the signal received at that
highlight.

The user can choose between common center processing and multiple center pro-
cessing. In the common center case the PointTarget creates only one receiver and
one transmitter located at the target’s origin, each of which has multiple channels,
one per highlight. This causes TargetEcho to create only two DirectSignal objects,
with multiple channels at the target end. In the multiple center case the PointTarget
creates a separate, single-channel receiver and transmitter for each highlight. This
causes TargetEcho to create two separate DirectSignal objects for each highlight.

The common center option is always faster, but it introduces an additional ap-
proximation: the offsets from the target center to the individual highlight locations
affect only the arrival times of the echoes, and not the directions from which they
arrive. Therefore, the multiple center option should be chosen whenever the target
is close enough for the sonar system to detect and use the target’s cross-range extent
(e.g., to compute “line-like” classification clues).

PointTarget also allows the user to specify a randomPosition value, which gives
the root mean square value of a Gaussian random component to be added to the
specified highlight locations. This can be used to break up unrealistic grating effects
from regularly spaced highlights.

52 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

9.1.2 HighlightTarget

Class HighlightTarget improves on PointTarget in three ways:

• Each highlight may have a complex, frequency-dependent response.

• Each highlight may have a delay between reception and transmission.

• Each highlight is assigned a group number. All highlights with the same group
number are treated as channels in a single receiver-transmitter pair. This pro-
vides the flexibility to model cross-range extent (e.g., by placing stern highlights
in one group and bow highlights in another) without paying the performance
price of treating each highlight as a separate target. Assigning each highlight
a different group number is equivalent to setting commonCenter to false in
PointTarget. Assigning the same group number to all highlights is equivalent
to setting commonCenter to true in PointTarget.

9.1.3 ExternalTarget

Class ExternalTarget is functionally identical to HighlightTarget except for the
source of its highlights. When you create an ExternalTarget object, it starts up
an external program provided by the user. At the start of each ping (when the
TargetEcho object is opened for reading), the ExternalTarget object sends to the
external program the distance and direction to the active sonar’s transmitter and
receiver and the range of signal frequencies. The external program sends back a list
of highlights. Once that exchange is complete, ExternalTarget behaves exactly like
a HighlightTarget.

This information exchange occurs via a pair of pipes connected to the external
program’s standard input and standard output streams. The protocol involves text
commands, and the data are in text form. Hence the external program can be tested
in isolation, without SST. The SST distribution includes a Fortran skeleton to serve
as a starting point, or the protocol can be implemented in the user’s favorite language.

Existing target models in use by the Navy take the form of subroutines that
return lists of highlights. Several of these models have been wrapped for use with
SST using class ExternalTarget. Among other advantages, this allows simulators to
use classified target models while keeping the SST code unclassified.

TR 0404 53

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

10 Reverberation

Reverberation can be thought of as the sum of echoes from a very large number of
discrete scatterers, each of which sends back a delayed, filtered, Doppler-shifted copy
of the source signal. Other descriptions are also valid, and mostly equivalent. Rever-
beration scatterers are on the surface (waves and bubbles), the bottom (roughness
and embedded inhomogeneities), and the ocean volume (mostly marine life). The
physical assumptions are the same as those used for target echoes: linearity, eigenray
propagation, single scattering, and restriction to the far field of the transmitter and
receiver.

A few more assumptions are added for reverberation: the scatterers that con-
tribute to reverberation are randomly distributed, and their density is so high that
the sonar system cannot resolve them as individual scatterers. Further, the number
of scatterers in each resolution cell of the sonar is assumed high enough to reach the
Gaussian limit. The consequence is that reverberation has Gaussian statistics.

Certain tactically important phenomena that are conventionally regarded as re-
verberation, most notably rock outcrops, often do not satisfy that assumption. For
now this problem is defined away by saying, “Reverberation is Gaussian. Echoes that
are not Gaussian are target echoes.” If false targets are tactically important, the
only current recourse is to model them explicitly as targets. We are working on other
options.

One way to generate simulated reverberation is the “point scatterer” approach:
Generate a very large number of discrete random scatterers with random locations,
velocities, and sizes, generate target echoes for each one, and add them up. If enough
scatterers are used in each sonar resolution cell, the resulting signal will approach
a Gaussian distribution by virtue of the Central Limit Theorem. Early versions of
SST [Goddard 1989] and REVGEN [Princehouse 1975, Princehouse 1978, Goddard
1986] used variants of that approach. Unfortunately, as the system time-bandwidth
product increases, the point scatterer approach becomes impractical, both because
the required density of scatterers increases and because frequency dependence in the
echo model becomes important.

SST’s current reverberation model is based on the scattering function approach,
which is less direct and obvious than the point scatterer approach, but much more
efficient. The task of generating simulated reverberation is broken into two major
steps:

• Compute the scattering function, a generalized intensity impulse response func-
tion introduced in Sec. 4.2.2.

54 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

• Combine the scattering function with the source signal and a stream of random
numbers to generate a realization of the reverberation signal.

This approach is not new. The basic idea has been described by Luby and Ly-
tle [Luby Lytle 1987], Hodgkiss [Hodgkiss 1984], and Chamberlain and Galli [Cham-
berlain Galli 1983], all of which built on the classic work of Faure [Faure 1964],
Ol’shevskii [Ol-shevskii 1967], and Middleton [Middleton 1967]. SST’s implemen-
tation is applicable to far more real systems than the versions described in those
references because we have discarded most of the simplifying assumptions: short
narrowband pulses, isovelocity single-path propagation, monostatic geometry, and
others.

10.1 Generating Reverberation

We begin with the second of the two steps: given a scattering function and a source
signal, generate a stochastic realization of the received reverberation.

SST computes the power spectral density for reverberation by performing a two-
dimensional convolution (versus Doppler Γ and two-way travel time T) of the scat-
tering function Zrr′s(f, Γ, T) with the power spectral density of the transmit signal:

Prr′s(f, tu) =

∫ ∫
Γ−2 Zrr′s(Γ, f, tu − tu′) Ps(f/Γ, tu′) dΓ dtu′ . (48)

The source PSD Ps(f, tu) comes from applying Eqs. (7) and (12) to the source signal.

Starting with this estimate for the PSD, SST generates Gaussian random real-
izations of the reverberation using the same Mitchell-McPherson algorithm used for
Gaussian noise, described in Sec. 4.6.1. The validity of this step depends on the same
assumptions required for noise: that the statistics are Gaussian and that an update
interval ∆ exists such that the time variation of Prr′s(f, tu) is slow on a scale of ∆
and, simultaneously, the frequency variation is slow on a scale of 1/∆. The resulting
signal has a very narrow frequency coherence width (order 1/∆) and a coherence time
that is usually of the same order as the inverse of the signal bandwidth but no longer
than ∆. This is realistic if the scattering function is sufficiently smooth.

SST Classes: Class ReverbSignal generates a realization of Gaussian rever-
beration starting from the scattering function and the transmit signal. It is im-
plemented using an object of class ReverbSpectrum, which implements Eq. (48),
together with SpectrumFromSignal [to compute Ps(f, tu), Sec. 4.2] and the Mitchell-
McPherson noise generation classes FactorSpectrum, GaussianSpectrum, and Sig-
nalFromSpectrum (Sec. 4.6.1).

TR 0404 55

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

10.2 Computing the Scattering Function

A detailed derivation of the scattering function, and a discussion of the approxi-
mations and assumptions on which it is based, are beyond the scope of this paper.
Some of those issues are discussed in a technical report [Goddard 1993] written early
in SST’s development. We are preparing a paper to update that material and add
new material on control of spatial and temporal coherence. Here, we will skip the
derivation and go directly to the answer.

The scattering function Zrr′s(Γ, f, T) is computed by evaluating the following in-
tegral:

Zrr′s(Γk, fm, Tν) =
1

H (δΓk)

∑
plq

∫
Akν,plqs

Uplqs(fm, r) (49)

×Br(fm, MRSRp(r)) B∗
r′(fm, MRSRp(r)) e2πifm τrr′p(r) dr ,

where

Uplqs(fm, r) = |Bs(fm, MSSSq(r))|2 |Lp(fm, rR, r)|2 |Lq(fm, r, rS)|2 (50)

×Sl(fm, STp(r), STq(r))

and τrr′p(r) is the difference between the first-order offset delays for receiver channels
r and r′:

τrr′p(r) = (MRSRp(r)) · (r′r − r′r′). (51)

The other factors in the integrand are familiar: the beam patterns Bx(f, S′), the
propagation losses Lp(f, rR, rS), and the bistatic scattering strength Sl(f, Sp, Sq).
The sum in Eq. (49) is over receive-path eigenrays p connecting the scattering field
at r to the receiver, transmit-path eigenrays q connecting the source to r, and a
scattering layer indexed by l. These “layers” include the surface, the bottom, and
any number of volume scattering layers. SST treats volume scattering layers as if all
of the scatterers were concentrated on a thin sheet at the center of the layer; this
reduces the spatial integration from three dimensions to two.

The scattering function has three conceptually continuous independent variables,
all of which are divided into bins for sampling: the Doppler shift Γ, the frequency
f , and the two-way travel time T . It also has three discrete indices: the source (or
source channel) s and two receiver channels r and r′. The appearance of two receiver
channels underscores the nature of the scattering function as a second-order statistic;
the off-diagonal elements (r 6= r′) give rise to correlations between receiver channels.

The subtle part is defining the domain of integration. For each layer and pair of
eigenrays, the domain of integration Akν,plqs in Eq. (49) is defined implicitly as the

56 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

locus of locations r on layer l for which the total round-trip propagation time falls
within time bin ν (centered on Tν with width H) and for which the Doppler shift due
to platform motion falls within Doppler bin k (centered on Γk with width δΓk) for a
given receive-leg path p, scattering layer l, and transmit-leg path q.

For a straight-line propagation model with a flat or uniformly sloping bottom, the
locus of constant two-way travel time is an ellipse. For a general eigenray model, there
is no closed-form mapping from time and Doppler to location, so SST uses standard
numeric root-finding techniques to define an approximately elliptical integration path
and to partition it into segments that fall into each Doppler bin. The details are
beyond the scope of this paper.

SST Classes: SST provides two classes, BBBScatFun and BBBDirection-
alScat, which differ primarily in the strategy used to partition the scattering layers
into time-Doppler bins. BBBScatFun does the integration of Eq. (49) separately for
each eigenray pair and layer plq, and sums them. The partitioning and integration
are done with considerable care for continuity and accuracy. Evaluation of the receive
beam patterns is in the inner loop; the number of beam pattern evaluations scales
with the product of the square of the number of beams, the square of the number of
eigenrays, the number of scattering layers, and the number of source channels.

The second choice, BBBDirectionalScat, gains speed (sometimes) by factoring
out the receive beam patterns and taking less care with the numerics. The first stage
is computing the directional scattering function:

Zs(Γk, fm, θi, φj, Tν) =
1

H (δΓk)

∑
plq

∫
Akijν,plqs

Uplqs(fm, r) dr , (52)

where now the integrand (Eq. (50)) excludes the receive beam patterns, and the
integration area Akijν,plqs is a patch on the scattering layer such that the eigenray
direction at the receiver falls in a small cell centered on elevation angle θi and bearing
angle φj in receiver-centered coordinates. For a given time bin Tν , this large data
structure is accumulated by evaluating the integrand for each ray pair and layer plq
at a number of sample points around the locus of constant travel time Tν , and adding
a properly scaled increment to the closest cell in Γ, θ, and φ for all frequencies fm.

The directional scattering function is almost always very sparse. For a given source
s and time Tν , four dimensions remain. The contribution for a given eigenray pair
and layer plq falls on a thin, closed band on the unit sphere, and those bands move
toward the equator (low elevation) as travel time increases. For a given direction
cell ij, typically only one Doppler cell k is nonzero. BBBDirectionalScat uses a
compromise memory management scheme that avoids wasting memory without a
large performance penalty.

TR 0404 57

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

SST includes hooks and Matlab scripts to create a Matlab movie that shows how
the directional scattering function evolves with time.

The second stage of BBBDirectionalScat inserts the receiver beam patterns and
the phase shift due to receiver channel offsets:

Zrr′s(Γk, fm, Tν) =
∑
ij

(δθi) (δφj) Zs(Γk, fm, θi, φj, Tν) (53)

×Br(fm, Sij) B∗
r′(fm, Sij) e2πifm Sij ·(r′

r−r′
r′) ,

where Sij is the slowness vector corresponding to elevation θi and bearing φj in
receiver-centered coordinates. The cell sizes in θ and φ are chosen by the user to be
small compared to the resolution of the sonar. The beam patterns are evaluated only
once for the required angles and frequencies, and used for all time steps.

The advantage of BBBDirectionalScat is that it is often faster than BBBScat-
Fun, especially when the sonar has many channels and there are many eigenrays (e.g.,
in shallow water). The main disadvantage is that the resulting scattering function
tends to be somewhat jagged; neighboring direction cells may have very different
values depending on where the integration sample points happen to fall. Users are
advised to start with BBBScatFun for its more careful numeric techniques. Those
who switch to BBBDirectionalScat for speed should compare the results of the two
methods and adjust the sample density until they give close to the same answers. Of
course, only the user can judge how close is close enough.

11 Summary and Plans

The Sonar Simulation Toolset is a mature, well-supported software product that has
contributed to many Navy projects since its first release in 1989. It produces sound,
suitable for listening or for feeding into a sonar front end, using commonly available
computers. SST is portable, general, broadband, bistatic, multi-channel, embeddable,
streamable, object oriented, unclassified, and offers flexible fidelity. It is available to
any DoD agency or contractor.

SST is actively supported and continuously improving. Development is always
driven by users’ requirements and sponsors’ priorities. We conclude with some direc-
tions that SST may move from here.

Coherence Control: In SST 4.1, the version described in this report, forward prop-
agation (Sec. 8) is entirely distinct from reverberation (Sec. 10). Forward spec-
ular reflections can involve loss of energy but no loss of coherence, whereas the

58 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

reverberation model produces almost complete loss of coherence. The truth is
somewhere between those extremes. The solution is to integrate the forward
reflection and forward scattering models into a single, consistent model that
generates FAT (Frequency, Angle, Time) spreading for all forward-propagated
signals. Under current funding from ONR 321US, SST soon will include an
initial model for FAT spreading, based in large part on work by Dahl [Dahl
1996, Dahl 1999, Dahl 2001, Dahl 2002]. Applications will include design and
evaluation of longer, higher-bandwidth active transmit signals, LPI pulses, and
acoustic communications.

Performance Tuning and Parallel Processing: SST is not intended as real-time
software. Nevertheless, speed is important to users. Current funding from
ONR 333 includes performance tuning, including work toward parallel algo-
rithms based on the MPI library [Gropp Lusk Skjellum 1999]. This will provide
dramatic performance increases for multi-processor computers and Beowulf-
style [Beowulf] clusters of commodity computers.

Target-like Clutter: Gaussian reverberation does not tell the whole story; a sta-
tistical model of target-like bottom clutter will be required for realistic perfor-
mance prediction in many important shallow-water environments. Such models
are under development [Abraham Lyons 2002]. Current work funded by ONR
333 will bring statistical clutter models into SST.

Interoperability: SST lies in the middle of the modeling and simulation hierarchy
because it is both a consumer of other people’s models and a producer of signals
for input to higher-level simulations like TRM. Hence, portability and interop-
erability are especially important concerns. The TEAMS [TEAMS] (and other)
standardization efforts will guide us in making SST more open, both from below
and from above.

Wakes: Ship wakes are a huge, complex problem, especially from the point of view of
torpedo defense. Current funding from ONR 321US supports simple modeling
of wakes, but that is only a start. Fundamental, innovative changes to current
modeling approaches will be necessary to model wakes more accurately and
comprehensively.

Updating Component Models: Improving the fidelity of SST’s underlying mod-
els is a continuing task, driven both by improvements in our scientific under-
standing and by the requirements of new SST applications. Examples of im-
provements that should be included in SST are the small-slope approximation
for rough-surface scattering [Thorsos Broschat 1995] and elastic bottom scat-
tering [Jackson Ivakin 1998]. In addition, SST’s support for very long passive

TR 0404 59

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

scenarios is incomplete, and SST’s practice of treating volume scattering lay-
ers as thin sheets of scatterers produces artifacts early in the return in some
situations. These and similar shortcomings must be corrected.

Lower Frequencies: Users in the air ASW community and others want SST-like
signal level simulation tools for lower frequencies. A bottom model with pen-
etration to sub-bottom layers would be a good start. A more radical change
would be to incorporate a wave-based propagation model.

Verification, Validation, and Accreditation: Making sure that SST simulations
reflect reality with useful accuracy is a continuing effort. We are always looking
for challenging data sets that are sensitive tests of SST’s unique capabilities.

Support: We support SST users by answering their questions, helping them set
up simulations, tracking down mysteries, fixing bugs, and distributing releases.
In return, our users keep us in touch with what is important or not, what
works well or doesn’t, what seems easy or hard to do, and what needs fixing or
enhancement. User support is one of the most important components in each
SST contract.

More Applications: We feel that only a small fraction of the Navy users who could
benefit from SST are using it. Our primary reward for the work that we do is
to see it make a positive difference to the national defense. Torpedoes, torpedo
defense, acoustic communications, shipboard and submarine sonars, bottom-
mounted arrays, sonobuoys, and many other classes of systems are candidates
for SST simulations. Early idea testing, advanced development, performance
prediction, interpretation of experiments, operator training, and many other
objectives can be served using realistic simulated sonar signals. We look forward
to continuing and expanded service to the U.S. Navy.

60 TR 0404

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

REFERENCES

[Abraham Lyons 2002] D. A. Abraham and A. P. Lyons, “Novel Physical Interpreta-
tions of K-Distributed Reverberation,” IEEE J. Ocean. Eng. 27, 800-813
(2002). 11

[Albers 1965] V. C. Albers, Underwater Acoustics Handbook – II (Pennsylvania State
University Press, University Park, PA, 1965), 188-189. 6

[APL Models 1994] “APL-UW High Frequency Ocean Environmental Acoustic Mod-
els Handbook,” APL-UW TR 9407, Applied Physics Laboratory, Univer-
sity of Washington, Seattle, WA, October 1994. 1.3, 5, 6.4.3

[APL SBU] “Applied Physics Laboratory Sensitive But Unclassified Information”,
https://www.sbu.apl.washington.edu 1.1

[Beowulf] Beowulf: Introduction, History, Overview, NASA, http://beowulf.

gsfc.nasa.gov/overview.html. 11

[Chamberlain Galli 1983] S. G. Chamberlain and J. C. Galli, “A Model for Numerical
Simulation of Non-Stationary Sonar Reverberation Using Linear Spectral
Prediction,” IEEE J. Ocean. Eng. OE-8, 21-36 (1983). 10

[Correia 1988] E. Correia, “Weapons Assessment Facility (WAF)”, Technology Di-
gest, Naval Undersea Warfare Center Division Newport, September 1988,
pp. 85-86. 1.2

[Cygwin] CygwinTM, Red Hat, Inc., http://www.redhat.com/software/cygwin/.
1.2, 2.6

[Dahl 1996] P. H. Dahl, “On the spatial coherence and angular spreading of sound
forward scattered from the sea surface: Measurements and interpretive
model,” J. Acoust. Soc. Am. 100, 748-758 (1996). 11

[Dahl 1999] P. H. Dahl, “On bistatic sea surface scattering: Field measurements and
modeling,” J. Acoust. Soc. Am. 105, 2155-2169 (1999). 11

[Dahl 2001] P. H. Dahl, “High-Frequency Forward Scattering from the Sea Surface:
The Characteristic Scales of Time and Angle Spreading,” IEEE J. Ocean.
Eng. 26, 141-151 (2001). 4.2.2, 11

[Dahl 2002] P. H. Dahl, “Spatial Coherence of Signals Forward Scattered from the
Sea Surface in the East China Sea,” in Impact of Littoral Environmental
Variability on Acoustic Predictions and Sonar Performance,edited by N. G.

TR 0404 61

https://www.sbu.apl.washington.edu
http://beowulf.gsfc.nasa.gov/overview.html
http://beowulf.gsfc.nasa.gov/overview.html
http://www.redhat.com/software/cygwin/

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

Pace and F. B. Jensen (Kluwer Academic Publishers, Netherlands, 2002),
pp. 55-62. 11

[Dean 1966] R. A. Dean, Elements of Abstract Algebra (John Wiley and Sons, New
York, 1966). 7.1

[Donelan Hamilton Hui 1985] M. A. Donelan, J. Hamilton and W. H. Hui, “Direc-
tional Spectra of Wind-Generated Waves,” Phil. Trans. R. Soc. Lond. A
315, 509-562 (1985). 5

[Doxygen] D. van Heesch, Doxygen, http://www.doxygen.org. 1.1

[Eggen Goddard 2002] C. Eggen and R. Goddard, “Bottom Mounted Active Sonar
for Detection, Localization, and Tracking,” in Proceedings Oceans ’02
MTS/IEEE (IEEE Publication 0-7803-7534-3, 2002), Vol. 3, pp. 1291-
1298, http://ieeexplore.ieee.org/Xplore/DynWel.jsp. 1.3

[Faure 1964] P. Faure, “Theoretical Model of Reverberation Noise,” J. Acoust. Soc.
Amer. 36, 259-268 (1964). 10

[Gilbert 1993] K. E. Gilbert, “A stochastic model for scattering from the near-surface
oceanic bubble layer,” J. Acoust. Soc. Am. 94, 3325-3334 (1993). 1.3, 5

[Gnuplot] T. Williams and C. Kelley, gnuplot, http://www.gnuplot.info/. 2.2

[Goddard 1986] R. P. Goddard, “REVGEN-4 High-Fidelity Simulation of Sonar
Pulses,” APL-UW 8505, Applied Physics Laboratory, University of Wash-
ington, Seattle, WA, June 1986. 1.3, 10

[Goddard 1989] R. P. Goddard, “The Sonar Simulation Toolset,” in Proceedings
Oceans ’89, The Global Ocean (IEEE Publication Number 89CH2780-5,
1989), Vol. 4, pp. 1217-1222. 10

[Goddard 1993] R. P. Goddard, “Simulating Ocean Reverberation: A Review of
Methods and Issues,” APL-UW 9313, Applied Physics Laboratory, Uni-
versity of Washington, Seattle, WA, October 1993. 10.2

[Goddard 2000] R. P. Goddard, “SST Bistatic Reverberation Modeling: North Sea
Experiment, April-May 1998,” APL-UW TM 5-00, Applied Physics Lab-
oratory, University of Washington, Seattle, WA, May 2000. 1.3

[Goldstein 1950] H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA,
1950). 7.1

[Golub Van Loan 1996] G. H. Golub and C. F. Van Loan, Matrix Computations
(Johns Hopkins University Press, Baltimore, MD, 1996), 3rd ed. 4.6.1

62 TR 0404

http://www.doxygen.org
http://ieeexplore.ieee.org/Xplore/DynWel.jsp
http://www.gnuplot.info/

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

[Gropp Lusk Skjellum 1999] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message-Passing Interface (MIT
Press, Cambridge, MA, 1999), 2nd ed. 11

[Hamming 1973] R. W. Hamming, Numerical Methods for Scientists and Engineers
(McGraw-Hill, New York, 1973), 2nd ed. 1.6

[Hodgkiss 1984] W. S. Hodgkiss, “An Oceanic Reverberation Model,” IEEE J. Ocean.
Eng. OE-9, 63-72 (1984). 10

[Hodgkiss 1989] W. S. Hodgkiss, “A Modular Approach to Exploratory Data Anal-
ysis,” in Proceedings Oceans ’89, The Global Ocean (IEEE Publication
Number 89CH2780-5, 1989), pp. 1100-1104. 2.2

[Jackson Ivakin 1998] D. R. Jackson and A. N. Ivakin, “Scattering from elastic sea
beds: First-order theory,” J. Acoust. Soc. Am. 103, 336-345 (1998). 11

[Katyl 2000] D. Katyl, “Distributed Systems at the Weapons Analysis Facility”, Sim-
ulation Technology Magazine, Vol. 2, Issue 4b, June 28, 2000, http:

//www.sisostds.org/webletter/siso/Iss_62/. 1.2

[Knight 1981] W. C. Knight, R. G. Pridham, and S. M. Kay, “Digital Signal Process-
ing for Sonar,” Proc. IEEE 69, 1451-1506 (1981). 1.1, 4.1.2

[Kulbago 1994] L. J. Kulbago, “A Study of Acoustic Backscatter from the Near-
Surface Oceanic Bubble Layer,” Master of Engineering thesis, The Penn-
sylvania State University, State College, PA, 1994. 5

[Lang Culver 1992] D. C. Lang and R. L. Culver, “A High Frequency Bistatic Ocean
Surface Scattering Strength,” ARL-PSU TM 92-342, Applied Research
Laboratory, Pennsylvania State University, State College, PA, December
1992. 5

[Luby Lytle 1987] J. C. Luby and D. W. Lytle, “Autoregressive Modeling of Nonsta-
tionary Multibeam Sonar Reverberation,” IEEE J. Ocean. Eng. OE-12,
116-129 (1987). 1.3, 10

[McDaniel 1990] S. T. McDaniel, “Models for Predicting Bistatic Surface Scattering
Strength,” ARL-PSU TM 90-88, Applied Research Laboratory, Pennsyl-
vania State University, State College, PA, March 1990. 5

[Mackenzie 1959] K. V. Mackenzie, “Reflection of sound from coastal bottoms,” J.
Acoust. Soc. Am. 32, 221-231 (1959). 6.4.3

TR 0404 63

http://www.sisostds.org/webletter/siso/Iss_62/
http://www.sisostds.org/webletter/siso/Iss_62/

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

[Mathematica] Mathematica, Wolfram Research, Inc., http://www.wolfram.com/

products/mathematica. 2.2

[Matlab] Matlab, The MathWorks, Inc., http://www.mathworks.com/products/
matlab/. 2.2

[Middleton 1967] D. Middleton, “A Statistical Theory of Reverberation and Similar
First-Order Scattered Fields. Part I: Waveforms and the General Process,”
IEEE Trans. Inf. Theory IT-13, 372-392 (1967). 10

[Mitchell McPherson 1981] R. L. Mitchell and D. A. McPherson, “Generating Non-
stationary Random Sequences,” IEEE Trans. Aerospace Electron. Syst.
AES-17, 553-560 (1981). 4.6.1, 4.6.1, 4

[Moe Jackson 1994] J. E. Moe and D. R. Jackson, “First-order perturbation solution
for rough surface scattering cross section including the effects of gradients,”
J. Acoust. Soc. Am. 96, 1748-1754 (1994). 5

[Mourad Dahl Jackson 1991] P. D. Mourad, P. H. Dahl, and D. R. Jackson, “Bot-
tom Backscatter Modeling and Model/Data Comparison for 100-1000 Hz,”
APL-UW TR 9107, Applied Physics Laboratory, University of Washing-
ton, Seattle, WA, September 1991. 5

[Mourad Jackson 1989] P. D. Mourad and D. R. Jackson, “High Frequency Sonar
Equation Models for Bottom Backscatter and Forward Loss,” in Pro-
ceedings OCEANS 89, The Global Ocean (IEEE Publication Number
89CH2780-5, 1989), pp. 1168-1175. 5

[Mourad Jackson 1993] P. D. Mourad and D. R. Jackson, “A model/data comparison
for low-frequency bottom backscatter,” J. Acoust. Soc. Am. 94, 344-358
(1993). 5

[Octave] Octave, University of Wisconsin, http://www.octave.org/. 2.2

[Ol-shevskii 1967] V. V. Ol-shevskii, Characteristics of Sea Reverberation (Consul-
tants Bureau, New York, NY, 1967). 10

[Oppenheim Schafer 1989] A. V. Oppenheim and R. W. Schafer, Discrete-Time Sig-
nal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1989). 1.1, 1.6, 4.5.1,
4.5.2, 4.5.2, 4.7

[Page-Jones 2000] M. Page-Jones, Fundamentals of Object-Oriented Design in UML
(Addison-Wesley, New York, NY, 2000). 1.1, 1.2

64 TR 0404

http://www.wolfram.com/products/mathematica
http://www.wolfram.com/products/mathematica
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.octave.org/

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

[Princehouse 1975] D. W. Princehouse, “REVGEN, A Real-time Reverberation Gen-
erator: Concept Development,” APL-UW 7511, Applied Physics Labora-
tory, University of Washington, Seattle, WA, September 1975. 1.3, 10

[Princehouse 1978] D. W. Princehouse, “Reverberation Generator Algorithm, A Sta-
tus Report,” APL-UW 7806, Applied Physics Laboratory, University of
Washington, Seattle, WA, February 1978. 1.3, 10

[Rouseff et al. 2001] D. Rouseff, D. R. Jackson, W. L. J. Fox, C. D. Jones, J. A.
Ritcey, and D. R. Dowling, “Underwater Acoustic Communication by
Passive-Phase Conjugation: Theory and Experimental Results,” IEEE J.
Ocean. Eng. 26, 821-831 (2001) 1.3

[Sammelmann 2002] Gary Steven Sammelmann, “PC SWAT 7.0: Users’ Manual,”
CSS Draft Report, Coastal Systems Station Code R22, Panama City, FL,
February 2002. 1.2

[Schulten Anderson Gordon 1979] Z. Schulten, D. G. M. Anderson, and R. G. Gor-
don, “An Algorithm for the Evaluation of the Complex Airy Functions,”
J. Comp. Phys. 31, 60-75 (1979). 5

[SST Web] R. P. Goddard, “The Sonar Simulation Toolset Web, Release 4.1”, APL-
UW TM 10-96 (Electronic Document), REVISED 2002, Applied Physics
Laboratory, University of Washington, Seattle, WA, November 2002. 1.1,
1.3

[Stroustrup 2000] B. Stroustrup, The C++ Programming Language (Addison-
Wesley, Reading, MA, 2000), Special Ed. 4.3

[Taylor 1955] T. T. Taylor, “Design of Line Sources Antennas for Narrow Beamwidth
and Low Sidelobes,” IRE Transaction on Antennas and Propagation AP-
3, 16-28 (1955). Also in C. A. Balonis, Antenna Theory — Analysis and
Design (Wiley & Sons, New York, 1997), pp. 358-362. 4

[TEAMS] Undersea Warfare TEAMS, led by ONR 333, ARL/PSU, and NUWC
(Newport, RI), http://uswteams.arl.psu.edu/homepage/Homepage.

svlt. 11

[Thorsos Broschat 1995] E. I. Thorsos and S. L. Broschat, “An investigation of the
small slope approximation for scattering from rough surfaces. Part I. The-
ory,” J. Acoust. Soc. Am. 97, 2082-2093 (1995). 11

[Urick 1983] R. J. Urick, Principles of Underwater Sound (McGraw Hill, New York,
NY, 1983), 3rd Ed. 1.1, 5, 6.3, 7.2

TR 0404 65

http://uswteams.arl.psu.edu/homepage/Homepage.svlt
http://uswteams.arl.psu.edu/homepage/Homepage.svlt

UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY

[Weinberg 1985] H. Weinberg, “Generic Sonar Model,” NUSC TD 5971D, Naval Un-
derwater Systems Center, New London, CT, June 1985. 5.3

[Weinberg Keenan 1996] H. Weinberg and R. E. Keenan, “Gaussian ray bundles
for modeling high-frequency propagation loss under shallow-water con-
ditions,” J. Acoust. Soc. Am. 100, 1421-1431 (1996). 1.3, 5.2

[Weinberg et al. 2001] H. Weinberg, R. L. Deavenport, E. H. McCarthy, and C. M.
Anderson, “Comprehensive Acoustic System Simulation (CASS) Refer-
ence Guide”, NUWC-NPT TM 01-016, Naval Undersea Warfare Center
Division, Newport, RI, March 2001. 1.2, 5.2

[Williams Jackson 1998] K. L. Williams and D. R. Jackson, “Bistatic bottom scat-
tering: Model, experiments, and model/data comparison,” J. Acoust. Soc.
Am. 103, 169-181 (1998). 5

66 TR 0404

REPORT DOCUMENTATION PAGE
Form Approved

OPM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main tain ing
the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Offi ce of In for ma tion
and Regulatory Affairs, Offi ce of Management and Budget, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
299-01

 Unclassifi ed Unclassifi ed Unclassifi ed SAR

73sonar, signal, reverberation, target echo, Generic Sonar Model (GSM), Comprehensive Acoustic
System Simulation (CASS), Gaussian Ray Bundle (GRAB)

The Sonar Simulation Toolset (SST) is a computer program that produces simulated sonar signals, enabling users to build an
artifi cial ocean that sounds like a real ocean. Such signals are useful for designing new sonar systems, testing existing sonars,
predicting performance, developing tactics, training operators and offi cers, planning experiments, and interpreting measure-
ments. SST's simulated signals include reverberation, target echoes, discrete sound sources, and background noise with speci-
fi ed spectra. Externally generated or measured signals can be added to the output signal or used as transmissions. Eigenrays
from the Generic Sonar Model (GSM) or the Comprehensive Acoustic System Simulation (CASS) can be used, making all of
GSM's propagation models and CASS's Baussian Ray Bundle (GRAB) propagation model available to the SST user. A com-
mand language controls a large collection of component models describing the ocean, sonars, noise sources, targets, and signals.
The software runs on several different UNIX computers. The software runs on several UNIX computers and Windows. SST's
primary documentation is the SST Web (a large HTML "web site" distributed with the SST software), supported by a collection
of documented examples.

This report emphasizes the science, mathematics, and algorithms underlying SST. This report is intended to be updated often
and distributed with SST as an integral part of the SST documentation.

The Sonar Simulation Toolset, Release 4.1: Science, Mathematics, and Algorithms

Approved for public release; distribution is unlimited

Applied Physics Laboratory
University of Washington
1013 NE 40th Street
Seattle, WA 98105-6698

March 2005 Technical Report

Robert P. Goddard

ONR N00014-01-G-0460 and
N00014-98-G-0001

Offi ce of Naval Research, Code 333
Adam Nucci
800 N. Qunicy Street
Arlington, VA 22217-5660

TR 0404

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Purpose
	1.2 Objectives and Attributes
	1.3 History
	1.4 Release
	1.5 Outline
	1.6 Notation

	2 Overview
	2.1 Assumptions
	2.2 Outputs
	2.3 Inputs
	2.4 Models
	2.5 Units and Coordinate Systems
	2.6 Computers

	3 Example
	4 Signals and Signal Transformations
	4.1 Signal Representations
	4.1.1 Real Samples
	4.1.2 Complex Envelope
	4.1.3 Windowed Frequency Domain

	4.2 Second Moment Time Series: Power Spectra and Scattering Functions
	4.2.1 Power Spectra
	4.2.2 Scattering Functions

	4.3 Data Flow Design
	4.4 Data Flow Classes
	4.5 Basic Signal Operations
	4.5.1 Variable Delays
	4.5.2 Variable Finite Impulse Response Filters

	4.6 Generating Signals
	4.6.1 Generating Gaussian Noise
	4.6.2 Generating Harmonic Tone Families
	4.6.3 Generating Modulated Tones

	4.7 Window Functions
	4.8 Grids

	5 The Eigenray Model
	5.1 Straight-line Eigenray Model
	5.2 CASS/GRAB Eigenrays
	5.3 Generic Sonar Model (GSM) Eigenrays
	5.4 Eigenray Interpolation and Ray Identity

	6 Ocean Model
	6.1 Ocean Depth
	6.2 Ocean Sound Speed
	6.3 Ocean Volume Attenuation
	6.4 Surface and Bottom Models
	6.4.1 Reflection Coefficients
	6.4.2 Bistatic Scattering Strength
	6.4.3 Boundary Classes

	6.5 Volume Scattering Strength

	7 Sonar and Source Models
	7.1 Trajectories and Coordinate Transformations
	7.2 Beam Patterns
	7.3 Sonar Transformation
	7.4 Source Transformation

	8 Direct Sound Propagation Models
	8.1 DirectSignal
	8.2 DirectSpectrum

	9 Target Echo Model
	9.1 Target Models
	9.1.1 PointTarget
	9.1.2 HighlightTarget
	9.1.3 ExternalTarget

	10 Reverberation
	10.1 Generating Reverberation
	10.2 Computing the Scattering Function

	11 Summary and Plans
	REFERENCES

